

2013-2014 Work Order

ED_I_Ltg_1:

LED Lab Test Study Final Report

Submitted to:
Jeorge Tagnipes, Energy Division, CPUC 505 Van Ness Avenue
San Francisco, CA 94102
(415) 703-2451

Prepared by:

Itrón

1111 Broadway
Suite 1800
Oakland, CA 94607
www.itron.com/consulting
October 25, 2017

With Assistance From:
Erik Page \& Associates

TABLE OF CONTENTS

DEFINITIONS1 EXECUTIVE SUMMARY .. 1-1
1.1 INTRODUCTION 1-1
1.2 BACKGROUND -1
1.3 OBJECTIVES 1-2
1.4 APPROACH 1-3
1.5 KEY RESULTS 1-4
1.6 RECOMMENDATIONS 1-5
1.7 CONTACT INFORMATION 1-6
2 INTRODUCTION 2-1
2.1 BACKGROUND 2-1
2.2 STUDY OBJECTIVES 2-3
2.3 ROADMAP TO REST OF REPORT 2-4
3 EXPERIMENTAL DESIGN \& SETUP 3-1
3.1 EXPERIMENTAL DESIGN OVERVIEW 3-1
3.2 THERMAL TESTING 3-3
3.3 PHOTOMETRIC TESTING 3-8
3.4 MAINTENANCE TESTING 3-8
4 SAMPLE DESIGN \& PREPARATION 4-1
4.1 SAMPLE DESIGN 4-1
4.2 SAMPLE PROCUREMENT 4-3
4.3 FINAL TEST SAMPLE 4-4
4.4 TEST SAMPLE PREPARATION 4-6
5 RESULTS 5-1
5.1 THERMAL TESTING 5-1
5.2 INITIAL PHOTOMETRIC TESTING 5-6
5.3 FINAL PHOTOMETRIC TESTING 5-13
5.4 MAINTENANCE TESTING 5-16
5.5 REGRESSION ANALYSIS OF FAILURE RATES 5-22
5.6 POST-MORTEM FORENSIC ANALYSIS OF FAILED LAMPS 5-24
6 SUMMARY AND DISCUSSION 6-1
6.1 DISCUSSION 6-2
6.2 KEY FINDINGS RELATIVE TO PRIMARY RESEARCH QUESTIONS 6-3
6.3 RECOMMENDATIONS FOR FUTURE WORK 6-4
7 APPENDICES 7-1

LIST OF FIGURES

Figure 3-1: Examples of recessed downlights (left), enclosed ceiling fixtures (middle), and bare sockets (right) 3-2
Figure 3-2: Thermal testing in recessed downlights (left) and enclosed ceiling fixtures (right) 3-4
Figure 3-3: Near-ambient temperature measurement in bare sockets 3-4
Figure 3-4: Example of LED lamp thermal stabilization curve during warm-up 3-5
Figure 3-5: Example of LED lamp thermal stabilization curve during cool-down. 3-6
Figure 3-6: Example of thermal switching cycle for an LED lamp 3-7
Figure 3-7: Maintenance test racks 3-9
Figure 5-1: Histogram of warm-up times for test lamps. 5-2
Figure 5-2: Histogram of cool down times for test lamps 5-3
Figure 5-3: Maximum lamp temperature vs lamp input power and fixture type. 5-4
Figure 5-4: Near ambient air temperature vs lamp input power and fixture type 5-5
Figure 5-5: Rated light output (lumens) vs. measured light output (lumens) 5-6
Figure 5-6: Rated power (W) vs. measured power (W) 5-7
Figure 5-7: Rated efficacy (Im / w) vs. measured efficacy (Im / W) 5-8
Figure 5-8: Measured light output (lumens) vs. measured efficacy (Im / W). 5-9
Figure 5-9: Rated Color Temperature (CCT) vs. Measured Color Temperature (CCT) 5-10
Figure 5-10: Rated Color Rendering (CRI) vs. Measured Color Rendering (CRI) 5-11
Figure 5-11: Measured Color Rendering index (CRI) vs. measured efficacy (Lm/W) by lamp type 5-12
Figure 5-12: Measured Color Rendering index (CRI) vs. measured efficacy (Lm/W) By CA quality spec compliance 5-13
Figure 5-13: Lumen maintenance rates for all test units. 5-14
Figure 5-14: Color shift observed for all test units 5-15
Figure 5-15: Distribution of lamp models relative to the number of failed test units per model. 5-19
Figure 5-16: Survival curves by lamp type 5-20
Figure 5-17: Survival curves by fixture type 5-21
Figure 5-18: Survival curves by lamp type-fixture type combinations 5-22
Figure 5-19: Failure location by category for test LED lamps 5-26
Figure 5-20: Examples of (a) LED solder failure and (b) LED failure 5-27
Figure 5-21: SEM images of (a) an LED contact pad showing embrittlement, inhomogeneous contact surface, and alloy whiskering; and (b) an LED with an inhomogeneous contact surface 5-28
Figure 5-22: Examples of major continuity failures for led drivers: (a) capacitor solder failure, (b) transformer solder failure, and (c) multiple solder and component failure (transformer and capacitor solder failures with localized heat stress are shown). 5-29

LIST OF TABLES

Table 3-1: Timing and luminaire distribution for each cycle zone...3-10
Table 4-1: Sample strata and their relative market shares in late 2014/early 2015 ...4-2
Table 4-2: Summary of final test sample of led lamps and downlight retrofit trim kits..4-5
Table 5-1: Summary of catastrophic failure rates observed by lamp-fixture combination ..5-16
Table 5-2: Summary of pre-failure behavior rates observed by all lamp-fixture combinations ...5-18
Table 5-3: Summary of estimated coefficients for "stable" variables across best-fitting models ..5-24

DEFINITIONS

Catastrophic lamp failure - The point at which a lamp ceases to produce any light output.
Cool-down time - The length of time required for lamp temperatures to decrease from their operational steady-state temperature to room ambient temperature after being switched off.

Cycle - One on-period followed by one off-period.
Cycling - The process of repeatedly turning a lamp on and off.
Failure curve - A graph that displays the failure rates as a function of operating hours (also referred to as survival curve).

Failure rate - The percentage of lamps that have failed.
Failure time - The run-time of a lamp at the point of lamp failure.
Final light output - The luminous flux of a lamp at the end of the testing period measured in lumens.
Initial light output - The luminous flux of a lamp before usage or seasoning measured in lumens.
Lamp failure - The point at which a lamp ceases producing any light output or displays flickering, flashing, and other behavior that does not provide steady useful light. ${ }^{1}$

Light output - See luminous flux.
Lumen depreciation - The decrease in the luminous flux of a lamp at a given time expressed as a percentage of that lamp's initial light output, e.g., a lamp with a lumen maintenance value of 70% will have experienced a lumen depreciation of 30%.

Luminous efficacy - The luminous flux of a source divided by the source's power, measured in lumens per watt.

Lumen maintenance - The luminous flux of a lamp at a given time expressed as a percentage of that lamp's initial light output, e.g., if a lamp with an initial light output of 1,000 lumens generates only 700 lumens after 4,000 hours of operation, it will have lumen maintenance of 70% at 4,000 hours.

Lumen output - See luminous flux.
Luminous flux - The total amount of visible light generated by a light source, measured in lumens (Im); also known as light output or lumen output).

[^0]95\% thermal stability - The point when a lamp has experienced 95\% of the necessary temperature increase after switching on or decrease after switching off to reach thermal stability.

Rated life - The expected lamp life as specified by the manufacturer.
Run-time - The total amount of time a lamp has been operated for, i.e., the sum of all the lamp's onperiods.

Thermal cycling - Cycling using switching cycles long enough to allow lamps to achieve full or near thermal stability both at the end of the on-period and the off-period.

Thermal stability - The point when a lamp reaches its maximum temperature during an on-period or its minimum temperature during an off-period.

Survival rate - The percentage of lamps that are still operational.
Switching cycle - A protocol in which lamps are repeatedly turned on for a defined period of time and then turned off for a defined period of time.

Switching frequency - The specific on-times and off-times that are utilized by a switching cycle.
Warm-up time - The length of time required for lamp temperatures to increase from room ambient temperature to their operational steady-state temperature after being switched on.

1 EXECUTIVE SUMMARY

1.1 INTRODUCTION

This report documents the results of a large-scale laboratory test of the performance of light-emitting diode (LED) lamps. Itron conducted this study as part of the California Public Utilities Commission (CPUC) Energy Division (ED) Evaluation Measurement \& Verification Work Order ED_I_LTG_1: LED Lab Test Study.

The primary objective of this study was to assess the effect of two common, temperature-related stress conditions on LED performance and longevity. This objective reflects a critical first step in meeting the CPUC's and its stakeholders' longer-term objective to assess the full suite of "real world" conditions that impact LED reliability and performance. From this perspective, the study was also designed to provide the data necessary to develop adjustments to the effective useful life (EUL) ${ }^{2}$ assumptions for LED lamps included in California's investor-owned utilities' energy efficiency portfolios.

1.2 BACKGROUND

LED lamps have seen explosive market growth in recent years and now are the primary lighting technology promoted in utility program portfolios across the country, including California. The high efficacy ${ }^{3}$ and longer life combine to promise attractive lifecycle cost savings of LED lamps over less efficient alternatives. However, significant uncertainties exist with respect to actual, average LED lamp life in real-world applications. These uncertainties stem primarily from the fact that current standardized tests focus on gradual decreases in light output as the primary measure of LED lamp life and do not directly account for early catastrophic failures due to heat, humidity, vibration, voltage fluctuations, and other real-world stress conditions. Consequently, both regulators and utility program administrators are increasingly wary of repeating the customer experience problems that occurred with the early generations of compact fluorescent lamps (CFLs) - particularly with respect to LED reliability.

In addition to this market context, there is also important programmatic context specific to California in the form of the Voluntary California Quality LED Specification (CA Quality Spec). The California Energy Commission (CEC) adopted this specification in late 2012 to establish performance standards to help identify and promote high quality LED lamps and avoid the customer-perception issues that impacted

[^1]CFLs. ${ }^{4}$ In turn, the CPUC issued a decision (D.12-05-015) as part of the larger energy efficiency proceeding (R.09-11-014) that required the LED products offered through the investor-owned utilities' (IOUs) programs to be compliant with the CA Quality Spec starting in January 2014. Despite the intent of the CA Quality Spec, however, the CEC and the CPUC both acknowledged a host of on-going uncertainties with respect to assessing LED reliability in the field and customer perceptions of CA Quality Spec-compliant products.

1.3 OBJECTIVES

As part of the 2013-2014 EM\&V Roadmap for Lighting, the CPUC specified the following over-arching research questions that were to be addressed by the LED Lab Study:

- How does switching LED lamps on/off impact the life and performance of the LED lamps?
- Are the manufacturers' specifications of LED rated life ${ }^{5}$ accurate?
- Are the IOUs' LED workpaper assumptions properly stated?

We then attempted to refine these high-level research questions into a more specific set of research objectives around which we could develop a coherent experimental design, sample design, and analysis plan. With significant participation from relevant California and national stakeholders, we developed a research plan designed to assess the impacts of the stress conditions most prevalent in residential homes and, simultaneously, the most tractable to evaluate in a laboratory setting. These stress conditions were high operating temperature and on-off switching patterns that cause lamps to repeatedly fully heat up and then fully cool down (often referred to as "thermal cycling"). Importantly, these two stress conditions could be investigated in a laboratory setting using a limited number of experiments, which allowed the test to be administered to a large, representative sample of lamps. Given this assessment, the specific research objectives for this study were:

- To assess the effect of temperature and switching patterns on efficacy, color quality, effective useful life, etc.; and
- To assess differences in performance between California Quality Spec-compliant LED lamps with the non-compliant competitors.

[^2]
1.4 APPROACH

The overall experimental design developed for this study focused on evaluating the impact of the ambient temperature conditions typically found in homes on LED lamp life. To do this, we followed the industrystandard testing procedures defined in the Illuminating Engineering Society's (IES) LM-84 with two key exceptions: 1) rather than testing lamps in bare sockets, lamps were tested in a variety of actual luminaires (i.e., light fixtures); 2) rather than operating lamps continuously, lamps were repeatedly switched on and off such that lamps could repeatedly fully heat up and then fully cool down. ${ }^{6}$

For our experiment, test lamps were operated in three common residential luminaire types: recessed downlights, ceiling fixtures, and bare sockets. These three luminaire types account for nearly two-thirds of the installed residential lighting fixtures in California according to the 2012 California Lighting and Appliance Saturation Survey (DNV GL, 2014). For each lamp model-luminaire combination, we tested three samples of the same model.

The overall experiment was composed of the following three main testing elements:

- Thermal testing. Each test unit was placed in its assigned luminaire type and was operated for a warm-up period of at least 12 hours and then and cool-down period of at least 12 hours. The temperature of a characteristic spot on the test lamp was measured and recorded at 1-minute intervals. These data were needed in order calculate the switching cycles to be used for the longer maintenance test.
- Photometric testing. ${ }^{7}$ Following the thermal tests, test lamps were removed from the luminaires and placed a light measurement device (known as an integrating sphere) and tested according to IES LM-79. ${ }^{8}$ All photometric tests were repeated on all surviving test units at the end of the experiment to assess changes in lumen output, color temperature, and other performance metrics.
- Maintenance testing. Following the initial photometric tests, all test units were placed in test luminaires and "maintenance testing" was initiated where lamps were switched on and off according to the lamp-temperature profiles established from the thermal testing. The maintenance testing was initiated in February 2016 and ran through April 2017.

[^3]In order to support the research objectives, we developed a sample of specific LED lamp models that was designed to be representative of the market in California at that point in time. Using the latest market data available from the California Retail Shelf Survey, ${ }^{9}$ we identified 92 models with the highest market shares in California that also allowed comparative analysis of CA Quality Spec, ENERGY STAR ${ }^{\circledR}$, and nonENERGY STAR cohorts of products. At the request of the IOUs, our sample also included 13 models of recessed downlight retrofit kits (sometimes called trim kits). It should be noted, however, that the trim kit models included in our testing were limited to those being offered in the IOUs' programs at the time and were not necessarily representative of the larger trim kit market in California.

Following the conclusion of the maintenance testing and second round of photometric testing, most of the failed test lamps were sent to a second laboratory for post-mortem forensic analysis. The objective of the post-mortem analysis was to determine the exact point of failure, wherever possible, for each lamp that failed during maintenance testing and how those failure points were or were not related to elevated operating temperature and/or switching patterns.

1.5 KEY RESULTS

The key empirical results from each element of our overall testing experiment are summarized below.

- Initial photometric testing:
- Measured values of lighting performance were largely consistent with rated values.
- Where deviations from rated values occurred, these deviations were mostly in the preferable direction from an energy efficiency point of view, i.e., lower power, higher output, higher efficacy, etc.
- On average, the measured efficacy of CA Quality Spec lamps was 20% lower compared to that of non-CA Quality Spec lamps (62 vs. 77 lumens/W).
- Maintenance testing:
- 24% of the units tested (160 out of 666) either failed catastrophically or exhibited "prefailure" behavior within a maximum of 4,500 hours of total on-time. ${ }^{10}$
- Failure rates were highest among A-lamps (38\%), ${ }^{11}$ while failure rates for globe, torpedo, and reflector lamps were comparatively lower (between 9% and 12\%).

[^4]- None of the trim kits tested failed catastrophically or exhibited "pre-failure" behavior.
- Two-thirds of all failures came from 12 specific models that performed particularly poorly.
- Final photometric testing:
- Only 8 of the test lamps (1.5\%) that survived maintenance testing experienced decreases in light output of 30% or more.
- Only 12 of the test lamps (2.2\%) that survived maintenance testing experienced changes in color temperature that might be considered noticeable/objectionable.
- Post-mortem forensic analysis:
- The most common points of failure were related to contact failures from poor or degraded solder connections that were consistent with high heat operation and repeated expansion and contraction due to operating temperature changes from switching.

Overall, the results produced by this study provide strong evidence that two stress conditions commonly found in residential homes - elevated operating temperature and on-off switching - are indeed significant stress conditions that can lead to early catastrophic failures in LED lamps. Our results also show that a significant portion of observed failures were concentrated in a few specific lamp models. A post-mortem forensic analysis of these failed lamps indicated that the most common points of failure were related to contact failures from poor or degraded solder connections that were consistent with high heat and repeated thermal expansion and contraction due to switching. Taken together, these findings suggest that the current industry testing standards for LED lamps either do not adequately address two common field conditions (i.e., operating temperature and switching patterns) and/or that certain models have latent manufacturing defects that are exposed as a result of our experimental design. The corollary to this is that we believe the results from this study indicate a distinct opportunity to augment or supplement current standardized performance tests with short-run reliability tests focused on temperature-related early failure modes that could help detect the type of poor-performing models identified in this study.

1.6 RECOMMENDATIONS

With these key findings in mind, we offer the following recommendations designed to build upon the key findings and address the key uncertainties from this study.

Temporal analysis of failure data. We believe that it is critical to explore the extent to which it may be possible to use failure rates observed over relatively short time scales (e.g., 1,000-2,000 hours) to reasonably project failure rates over longer time scales. Specifically, the objective of such an analysis would be to determine how much total on-time and/or switching is required to be able to reasonably project the failure rates that we observed through 4,500 hours of total on-time.

Leverage the upcoming In-Home Lighting Inventory and Metering Study to address major assumptions and primary data gaps. The key uncertainties in this study are all related to a lack of specific types of primary data. We believe that it would be possible to address these primary data gaps by expanding the scope of the upcoming In-Home Lighting Inventory and Metering Study to include:

- Detailed descriptive data on the installed stock of residential lighting fixtures and luminaires;
- Measurement of LED lamp operating temperatures in the field; and
- Detailed data on switching patterns by fixture type and room type.

Develop formal adjustments to the reported EULs for LED lamps in IOU programs. Despite the key uncertainties in this study, we believe that the data generated by our testing experiment and the data currently available from the 2012 California Lighting and Appliance Saturation Survey (CLASS) would enable a reasonable survival analysis to be conducted immediately. ${ }^{12}$ Indeed, SCE staff conducted a survival analysis for CFLs using the results of the previous CFL Lab Test Study and the logger data from the 2008 CLASS. We recommend that the CPUC conduct a survival analysis for LED lamps based on the same approach. If and when primary data from the upcoming In-Home Lighting Inventory and Metering Study become available, this survival analysis can be updated. However, given the highly dynamic nature of the LED market and LED programs in California, we do not recommend delaying a formal survival analysis.

1.7 CONTACT INFORMATION

The ED Project Manager for this study was Mr. Jeorge Tagnipes. Itron served as the Prime Contractor managing this study, led by Mr. Mike Ting. Erik Page (Erik Page \& Associates) was the lead investigator as a subcontractor to Itron. The contact information for Mr. Tagnipes, Mr. Ting, and Mr. Page is provided below.

Name	Organization	Project Role	Contact Information
Jeorge Tagnipes	CPUC	ED project manager	$(415) 703-2451$ jeorge.tagnipes@cpuc.ca.gov
Mike Ting	Itron	Prime contractor, project manager	$(510) 844-2883$ michael.ting@itron.com
Erik Page	Erik Page \& Associates	Subcontractor, lead investigator	$(415) 448-6575$ erik@erikpage.com

[^5]
2 introduction

In this section, we provide a brief overview of the background and context for this study, which directly informed the research objectives and approach. Additional details are available in the Research Plan. ${ }^{13}$

2.1 BACKGROUND

During the 2010-2012 EM\&V cycle, the CPUC and Southern California Edison (SCE) funded a large-scale laboratory test of Compact Fluorescent Light (CFL) lamps in order to address uncertainties in estimates of CFL rated life (and therefore lifecycle energy savings and cost-effectiveness). Specifically, the CFL lab test study focused on quantifying the relationship between switching cycles and CFL lamp life.

As part of the 2013-2014 EM\&V Roadmap for Lighting, the CPUC set aside $\$ 500,000$ to conduct an analogous study focusing on Light Emitting Diode (LED) lamps to address the same set of core questions, specifically: ${ }^{14}$

- How does switching LED lamps on/off impact the life and performance of the LED lamps?
- Are the manufacturers' specifications for LED effective useful life accurate?
- Are the IOUs' LED workpaper assumptions properly stated?

In addition to this, the CPUC also expressed the following high-level objectives that this LED lab test study should be designed to address:

- Generate results that can help inform updates to ex ante estimates of effective useful life (EUL) and energy savings impacts for LED replacement lamps
- Generate results that can help inform the design and evaluation of IOU upstream lighting programs for LED replacement lamps
- Generate results in the near-to-midterm (6-12 months) in order to inform 2016 program offerings and maintain pace with a rapidly evolving LED market

The dynamic nature of the LED lamp market must be taken into account when designing a large-scale lab test in order to avoid or minimize the prospect of testing products that are no longer available by the time

[^6]the study is completed. The LED lamp market has been evolving and expanding rapidly over the last decade. Shipments of omnidirectional LED lamps grew by a factor of 50 from 2008 to 2012, and shipments of directional LED lamps grew by a factor of nearly 100 over the same period. ${ }^{15}$ At the same time, the luminous efficacy of LED replacement lamps (lumens per watt) has steadily increased (from an average of $40 \mathrm{~lm} / \mathrm{W}$ in 2008 to $65 \mathrm{Im} / \mathrm{W}$ in 2012), and average prices have steadily decreased (from \$250/klm in 2008 to $\$ 40 / \mathrm{klm}$ in 2012). These trends are expected to continue going forward, with average prices expected to drop by another 50% over the next two years and average lamp performance expected to exceed 200 Im / W by $2020 .{ }^{16}$ Further complicating this issue is the fact that the rated useful life of LED replacement lamps is significantly longer than analogous CFL lamps - typically 25,000 hours or longer - which adds to the tension between the time needed to design and execute a large-scale lab test and the dynamic nature of the LED market.

In December 2012, the California Energy Commission (CEC) adopted the Voluntary California Quality LED Specification (CA Quality Spec) that established performance standards to help identify and promote high quality LED lamps. ${ }^{17}$ The impetus behind the development and adoption of the CA Quality Spec was born directly from California's collective experience with compact fluorescent lamps (CFLs), where public perceptions of CFLs were severely tainted by early customer experiences with poor product quality, e.g., light color, flicker, noise, lack of dimmability, and early failure. ${ }^{18}$

Industry-standard tests promulgated by the Illuminating Engineering Society (IES) focus on measurements of photometric performance (LM-79-08) and lumen maintenance over time (LM-80-08 and LM-84-14). LM-79 provides a wide range of photometric performance data (e.g., lumen output, luminous efficacy, color temperature, color rendering index, etc.) on a snapshot basis. LM-80 focuses on producing standardized measurements of lumen maintenance of LED packages, arrays, and modules over time, which can then be used to estimate and verify total useful life using a projection formula developed and published by IES in 2011 (TM-21-11). The recently adopted LM-84 is similar to LM-80 but includes LED lamps and luminaires in its scope, recognizing that components in these systems other than the LED light sources may also impact lumen maintenance. IES has also recently released TM-28-14 which provides methods for projecting lumen maintenance for LED lamps and luminaires based on LM-84 test results.

The IES procedures and methods are critical for defining uniform test conditions so that results from different laboratories and of different light sources can be fairly compared. But "real-world" operating conditions can vary significantly from IES defined test conditions and these variations can have significant

[^7]impacts on LED lamp performance. It is also important to note that total useful life estimates that are derived from LM-80 and TM- 21 as well as LM-84 and TM- 28 strictly reflect estimated lumen maintenance levels over time and do not reflect any standardized testing or estimates of catastrophic failure rates.

2.2 STUDY OBJECTIVES

Given the market, regulatory, and programmatic contexts summarized above, we then attempted to refine the high-level objectives set forth by the CPUC in the 2013-2014 EM\&V Roadmap for Lighting into a more specific set of research objectives around which we could develop a coherent experimental design, sample design, and analysis plan.

At the highest order, the research objectives must be achievable within the total budget and time constraints defined for this study. Specifically, this translates into a total scope of effort that cannot exceed the available budget and generates results that could inform 2016 program offerings.

Secondly, we have a clear obligation to focus the research objectives on assessing the performance of CA Quality Spec-compliant products against their non-compliant competitors in order to align our efforts with the regulatory and program environment in California.

Third, there was a strong consensus across the IOUs, the CEC, and other LED industry stakeholders around the need for stress testing LED lamps in conditions beyond those reflected in current industry-standard tests in order to identify conditions that cause early/catastrophic failure. The specific stress conditions identified by stakeholders and in the research literature as potentially important were temperature, humidity, switching patterns, voltage, vibration, and interactions with controls (particularly dimmers).

Given this consensus, we then assessed the scope of stress testing that could be feasibly executed within the budget and time constraints of this study. This assessment indicated that the authorized budget could support either a stress test focused on one variable (e.g., temperature) across a large, representative sample of lamps or a broader set of experiments across a much smaller sample of lamps. The tradeoff we face, therefore, is between generating a narrow, focused set of results based on representative samples and generating a wider range of results based on small, anecdotal samples.

When viewed through the lens of the larger body of LED research, conducting a large-sample test of narrowly-defined stress conditions would complement small-sample, more extreme/multi-dimensional stress testing recently done/being done by the USDOE's Commercially Available LED Product Evaluation and Reporting (CALiPER) program, the Lighting Research Center at Rensselaer Polytechnic Institute, and the California Lighting Technology Center, and others. When viewed through the lens of IOU programs in California, conducting a large-sample test of narrowly-defined stress conditions would allow the IOUs and the CPUC to use the results of the tests to make regulatory and program design decisions with more certainty over the immediate term than a small-sample test of more widely-defined stress conditions where follow-on tests (and funding) would likely be required to establish statistical validity.

We also attempted to assess which stress condition (among those identified by stakeholders) is most prevalent in residential homes in California and also most tractable to evaluate in a laboratory setting. Of the six specific stress conditions identified by stakeholders, we agree with stakeholders that high operating temperature and thermal cycling (due to specific switching patterns) are the two most prevalent stress conditions in California homes and the most tractable to evaluate in a laboratory setting using a limited number of experiments, which would allow the test to administered to a large, representative sample of lamps.

Given the assessments summarized above, the specific research objectives defined for this study were therefore:

- To assess the effect of temperature and switching patterns (thermal cycling) on the performance (efficacy, color quality, useful life, etc.) of a representative sample of LED replacement lamps; and
- To assess differences in performance (under the test conditions above) between CA Quality Speccompliant LED replacement lamps and their cheapest, non-Spec competitors.

2.3 ROADMAP TO REST OF REPORT

This final report is intended to provide the CPUC and its stakeholders with documentation of the testing procedures, test sample, and data collection methods used in the study, along with a comprehensive presentation of the laboratory testing results. We also present results from a post-mortem forensic analysis of test lamps that experienced catastrophic failure during our stress testing regime.

The remainder of this report is organized as follows:

- Section 3 provides an overview of the experimental design and provides details about the specific testing procedures and data collection methods used in the study.
- Section 4 provides an overview of the sample design used to determine the specific models tested in the study, the procurement process used to acquire those models, and the steps taken to prepare units for testing.
- Section 5 presents the key results from the laboratory testing, along a summary of the results from the post-mortem analysis.
- Section 6 provides a discussion of the key findings from the study and identifies areas for followon research.

3 EXPERIMENTAL DESIGN \& SETUP

In this section, we provide an overview of the experimental design developed for this study and provide details related to the specific laboratory testing and data collection procedures that were implemented. ${ }^{19}$ The laboratory tests were implemented by Independent Testing Laboratories, Inc.

3.1 EXPERIMENTAL DESIGN OVERVIEW

In field application, LED lamps can be expected to experience variations in operating conditions that differ from conditions defined by the IES test procedures utilized to develop "rated values" of LED lamp life and performance. While these variations between laboratory conditions and field condition may impact LED lamp life and performance, these relationships are largely undocumented. Significant knowledge gaps remain concerning how much operating conditions typically vary between laboratory conditions and field conditions, which operating conditions are most likely to see variation and in turn impact lamp life and performance, and how much variability exists between specific LED lamp models in terms of resiliency to changes in operating conditions.

Based on stakeholder feedback and research into the parameters most likely to impact LED lamp life, our experiment focused on evaluating the impact of the thermal conditions typically found in residential applications. Specifically, we looked at the impact of high heat and thermal cycling on LED lamps according to the operation conditions defined in IES LM-84, except as specified in the section below. LED lamps were operated at elevated temperatures and with near-full thermal cycling (due to switching patterns) for extended periods of time.

In order to achieve elevated temperatures typical of residential applications, test lamps were Note on CPUC-funded vs. IOU-funded testing scope: The study team developed the experimental design and sample design presented here with a sole focus on screw-based LED lamps, per the priorities communicated by Energy Division staff. However, while the study team was contracting with the testing facility, the IOU program tracking data from Q1 2015 indicated that LED recessed downlight retrofit kits ("trim kits") were beginning to account for a larger share of IOU portfolio claims than anticipated. The electric IOUs (PG\&E, SCE, and SDG\&E) expressed a strong interest in including a sample of LED trim kits in the testing regime already developed for screw-based LED lamps and provided separate funding to cover the associated increase in testing and analysis scope. In this sense, it should be understood that the experimental design and test procedures were not modified for the addition of trim kits to the test sample. Similarly, the sample of trim kits that were tested are only reflective of the products currently offered through IOU upstream programs and are not intended to be representative of the larger LED trim kit market in California.

[^8]types: recessed downlights, ceiling fixtures, and bare sockets (see Figure 3-1). These three luminaire types account for nearly two-thirds of the installed residential lighting fixtures in California according to the 2012 California Lighting and Appliance Saturation Survey (DNV GL, 2014). Because of their design and expected normal application, some LED lamp types were only tested one or two luminaires. For example, reflector LED lamps were tested in recessed downlights and bare sockets but not in enclosed fixtures because their field application in enclosed fixtures is considered unlikely. ${ }^{20}$ For each lamp model-luminaire combination, we tested three samples of the same model.

FIGURE 3-1: EXAMPLES OF RECESSED DOWNLIGHTS (LEFT), ENCLOSED CEILING FIXTURES (MIDDLE), AND BARE SOCKETS (RIGHT)

The overall experiment was composed of the three main elements: thermal testing, photometric testing, and maintenance testing. Each of these testing elements is described in more detail in Section 3.2, 3.3, and 3.4 , respectively. Before that, however, we present more detail and documentation related to the luminaires used in the overall testing regime.

3.1.1 Recessed Downlight

This application accounts for the vast majority of reflector lamp applications, as well as 10% of A-lamp LED applications in California Homes. ${ }^{21}$ This application represents the some of the most extreme temperature conditions and also has significant operating hours. With the exception of the 4 " retrofit kits, all lamps and retrofit kits tested in recessed downlights were operated in in Halo H7UICAT recessed downlights. ${ }^{22}$ The 4" retrofit kits were operated in Halo EI400ATSP recessed downlights. Downlights were

[^9]covered with $3^{\prime \prime}$ of fiberglass insulation in a lamp maintenance facility where ambient temperatures were controlled at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. No accessories (e.g., reflectors, trims, etc.) other than the test lamps themselves were installed in the downlight housings. For each A-lamp, reflector lamp, and downlight retrofit kit model included in the test, three units of each model were tested in recessed downlights. In total, 246 lamps/retrofit kits representing 82 models were tested in recessed downlights.

3.1.2 Enclosed Ceiling Fixture

Along with wall-mount luminaires, this application is the most popular for A-lamp replacement lamps. Ceiling fixtures were selected for use in this test rather than wall fixtures because the temperatures were expected to be higher. The enclosed ceiling fixtures used in this test had a diameter of 6 " and a height of $7.5^{\prime \prime}$ (Westinghouse model \#6660700). The fixtures were installed in a lamp maintenance facility where ambient temperatures were controlled at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. For each A-lamp and medium screw base torpedo/bullet model included in the test, three units of each model lamps were tested in enclosed ceiling fixtures. In total, 144 lamps representing 48 models were tested in enclosed ceiling fixtures.

3.1. 3 Bare Socket

The last "luminaire type" is not a luminaire at all but rather a bare socket. This application was selected because it can serve as a good proxy for table and floor lamps as well as non-enclosed ceiling and wall mounted luminaires. This application would also represent the lowest temperature application that LED lamps might be expected to operate in. Roughly half of the bare sockets in the test were oriented base down (i.e., matching the orientation of floor lamps and table lamps), and half were oriented base up. The bare sockets were installed in a lamp maintenance facility where ambient temperatures were controlled at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. For each A-lamp, reflector lamp, globe, and torpedo/bullet model included in the test, three units of each model were tested in bare sockets. In total, 276 lamps representing 92 models were tested in enclosed ceiling fixtures.

3.2 THERMAL TESTING

In order to assess the impact of thermal cycling, it was first necessary to determine the time required for test lamps to achieve thermal equilibrium after they were turned on or off through an initial set of thermal testing. These data were needed in order calculate the switching cycles to be used for the longer maintenance test. In selecting switching cycles, our goal was to select warm-up and cool-down times that were long enough to allow lamps to at least reach 95% of their steady-state operating temperature while also trying to maximize the total number of thermal cycles and total on-time per day.

Each test sample was placed in its assigned luminaire type and switched on for a period of at least 12 hours and then switched off for a period of at least 12 hours. The temperature of a characteristic spot on
the surface of the test subjects was measured and recorded continuously at 1-minute intervals. The location of the thermal measurement spot varied slightly from between lamp models based on their shapes and sizes. However, the usual measurement point was at the midpoint of the section of the lamp that housed the lamp driver and associated electronics. The axial location of the temperature measurement spot was selected randomly (i.e., we did not attempt to identify and select the hottest side of the lamp). Figure 3-2 shows photographs of the thermal testing of recessed downlights and enclosed ceiling fixtures.

FIGURE 3-2: THERMAL TESTING IN RECESSED DOWNLIGHTS (LEFT) AND ENCLOSED CEILING FIXTURES (RIGHT)

In approximately 15% of thermal tests, a second temperature measurement of the air ambient temperature near the test subject was also recorded. Figure 3-3 shows a photograph of a near-ambient air measurement in bare sockets (base up and base down). The vast majority of near ambient measurements were conducted in recessed downlights and enclosed ceiling fixtures, and lamps were selected based on the results of their measured temperature profiles in order to capture a wide and representative range of operating temperatures. Several models were tested in all luminaire types (including bare sockets).

FIGURE 3-3: NEAR-AMBIENT TEMPERATURE MEASUREMENT IN BARE SOCKETS

Figure 3-4 shows a curve of the warm-up and stabilization of one of the lamps included in the test as characterized during the thermal test. This lamp experienced temperature change of $46^{\circ} \mathrm{C}$ at the measurement spot on its surface, rising from room temperature of $25^{\circ} \mathrm{C}$ to a maximum temperature of $71^{\circ} \mathrm{C}$ after 80 minutes. This lamp experienced 95% of this temperature increase (to $69^{\circ} \mathrm{C}$) after 37 minutes. This test indicates that this lamp could be put on a switching cycle with a warm-up time of 37 minutes or longer. This allows the lamp to achieve a near-full warm up while doubling the number of thermal cycles we could subject the lamp to compared to an approach requiring 100% thermal stability.

FIGURE 3-4: EXAMPLE OF LED LAMP THERMAL STABILIZATION CURVE DURING WARM-UP

Figure 3-5 shows the cool-down for this same LED lamp after the lamp is turned off. The lamp experienced temperature change of $51^{\circ} \mathrm{C}$ at the measurement spot on its surface, dropping from a maximum temperature of $71^{\circ} \mathrm{C}$ to a room temperature of $20^{\circ} \mathrm{C}$ after 205 minutes. ${ }^{23}$ However, the lamp experienced 95% of this total temperature decrease (to $23^{\circ} \mathrm{C}$) after 60 minutes.

FIGURE 3-5: EXAMPLE OF LED LAMP THERMAL STABILIZATION CURVE DURING COOL-DOWN

[^10]Figure 3-6 adds a green line on to the warm-up and cool-down plots from Figure 3-4 and Figure 3-5 to illustrate what a switching cycle for this lamp may look like in our experimental design. The lamp would be turned on for 37 minutes until it reached 95% of its steady-state operating temperature and then turned off for 60 minutes to allow it to cool down to near room temperature. In this example, a "complete" warm-up and cool-down cycle would take 98 minutes, allowing this lamp to be thermally cycled 14.7 times a day. Using this approach, we identified the switching cycles that would produce full or near-full thermal cycles for each test lamp. To be clear, the switching cycles established via the thermal testing were designed to maximize the number of thermal cycles that each test lamp could be subjected to over a fixed period of time so that we could assess thermal cycling as a stress condition that leads to catastrophic failure of LED lamps.

FIGURE 3-6: EXAMPLE OF THERMAL SWITCHING CYCLE FOR AN LED LAMP

In summary, data collected from the thermal test included the following:

- Profiles of the temperature of a characteristic location on each lamp and retrofit kit during warm-up and cool-down when operated in assigned luminaires. Warm-up and cool-down periods were at least 12 hours long with temperature measurements taken at 1-minute intervals
- Profiles of the air temperature inside the test luminaires for 103 of the test lamps (also at 1minute intervals over 12-hour warm-up and cool-down periods)
- Calculations of the time required for lamps to reach 95\% of their steady-state operating temperature after being switched on (warm-up time) and the time required for lamp temperatures to decrease from their steady-state operating temperature to room ambient temperature after being switched off (cool-down time)

The complete set of thermal test results for each test lamp is provided in Appendix A.

$3.3 \quad$ PHOTOMETRIC TESTING

Following the thermal tests, we conducted an initial round of photometric testing on each test lamp. These photometric tests were conducted on bare lamps (i.e., without luminaires) in an integrating sphere according to IES LM-79. The specific photometric and electrical measurements included: power input, lumen output, power factor, total harmonic distortion (THD), color rendering index (CRI), correlated color temperature and (CCT) for each test unit. All photometric tests were repeated on all surviving test units at the end of the experiment to assess changes in lumen output, color temperature, and other performance metrics.

3.4 MAINTENANCE TESTING

Following the initial photometric tests, all test units were placed in test luminaires and "maintenance testing" was initiated where lamps were switched on and off according to the thermal cycle timing established from the thermal testing. This varies from the test conditions described in IES LM-84 where lamps are continuously operated at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ in open air in bare sockets. Otherwise, all other conditions were identical with those in IES LM-84. The maintenance testing was initiated in February 2016 and ran through April 2017.

Recessed downlights were placed $12^{\prime \prime}$ on center from each other, had a least $12^{\prime \prime}$ of unobstructed area beneath them, and were covered in $3^{\prime \prime}$ of fiberglass insulation to simulate typical ceiling installations (see Figure 3-7). Enclosed ceiling fixtures were installed with a minimum spacing of 24 " on center and 18" vertically. Bare sockets lamps were tested in 12 "x12"x12" cavities. Half of bare socket lamps were tested in a "base-up" orientation while the other half were tested "base-down." An automated control and data acquisition system was used to turn test units on and off, as well as to record failure times. Each test unit
had a photosensor associated with it and failure times were recorded when these photo-sensors registered a sudden drop in light output without the lamp having been switched off. The failures were confirmed physically with a technician going to the failure location and ensuring the lamp had in fact failed (e.g., that it was not a problem with the photosensor, or that the lamp had not become unscrewed).

The control system used to turn test units on and off had 22 control zones. Each control zone could be programmed with a specific on-time and off-time and all test units on that control zone would then be turned on and off according to these settings. The test units with similar warm-up and cool down characteristics (as measured by the thermal test) were grouped together and placed in the same control zone. In this way, the on-time and off-time of each switching cycle could be defined to be as short as possible. Again, this approach maximized the number of thermal cycles each test unit was subjected to while allowing all test units to reach at least 95% thermal stability. Since the thermal cycle timing for each group was defined so that the test units with the longest warm-up and cool down times were able to reach 95% thermal stability, most lamps were operated for longer periods than were necessary to achieve 95% stability. As shown previously in Figure 3-6, test units on each control zone were repeatedly subjected to warm-up periods and then cool down periods long enough to at least achieve 95% thermal stability. Table 3-1 provides the on-time and off-times of each of the 22 switching cycles, the amount of on-time and number of thermal cycles per day lamps and retrofit kits on these cycles experienced, and the quantities of each luminaire type in each control zone.

FIGURE 3-7: MAINTENANCE TEST RACKS

TABLE 3-1: TIMING AND LUMINAIRE DISTRIBUTION FOR EACH CYCLE ZONE

Control Zone	On- time (min)	Offtime (min)	On-time per day (hrs)	Number of Luminaires per Control Zone					
				Thermal Cycles per day	Recessed Downlight	Ceiling Fixture	Base-up Socket	Base-down Socket	Total Luminaires
1	56	89	9.3	9.9	25	0	15	0	40
2	72	102	9.9	8.3	21	0	0	3	24
3	89	117	10.4	7.0	24	0	7	0	31
4	75	94	10.7	8.5	24	0	0	12	36
5	76	114	9.6	7.6	26	0	18	0	44
6	89	129	9.8	6.6	26	0	0	14	40
7	105	140	10.3	5.9	26	0	4	0	30
8	48	60	10.7	13.3	0	0	0	48	48
9	58	80	10.1	10.4	0	0	0	34	34
10	73	112	9.5	7.8	0	0	0	28	28
11	144	202	10.0	4.2	24	0	0	0	24
12	62	94	9.5	9.2	0	0	15	0	15
13	65	87	10.3	9.5	0	0	34	0	34
14	51	67	10.4	12.2	0	0	39	0	39
15	41	107	6.6	9.7	24	0	0	0	24
16	49	81	9.0	11.1	26	0	0	5	31
17	38	57	9.6	15.2	0	18	0	0	18
18	43	61	9.9	13.8	0	21	0	0	21
19	45	67	9.6	12.9	0	27	0	0	27
20	54	67	10.7	11.9	0	24	0	0	24
21	59	91	9.4	9.6	0	27	0	0	27
22	78	109	10.0	7.7	0	27	0	0	27
				Total	246	144	132	144	666

4 SAMPLE DESIGN \& PREPARATION

In this section, we present an overview of the final sample design used for the LED lab test study, describe the approach used to procure the test samples, and summarize the steps taken to prepare the test samples for the photometric, thermal, and maintenance testing regimes.

4.1 SAMPLE DESIGN

As described in more detail in the Research Plan, we assessed the completeness, product detail, and vintage of the three readily available sources of comprehensive LED market share data to determine their respective usefulness as a basis for sample design:

1) The IOUs' standard program tracking (SPT) data (for both the 2010-2012 and 2013-2014 program cycles),
2) The 2014-2015 retail lighting shelf survey (RLSS) ${ }^{24}$ data collected by DNV GL as part of the Upstream Residential Lighting Impact Evaluation (WO28), and
3) National shipment data published by the USDOE. Of these three data sources shown, the source with the model-specific detail required to support sample design development for this study was the RLSS data.

Strictly speaking, these data represent the relative availability of different LED lamp products in California, rather than their relative sales volumes. However, in the absence of up-to-date, comprehensive point-ofsales (POS) data for LED lamps, the RLSS data represent the best proxy for relative sales volumes available for purposes of developing a sample design for this LED lab test effort.

Using the 2014-2015 RLSS data, we began defining sample strata as unique combinations of lamp type (i.e., A-lamp, globe, PAR30, PAR38, etc.), base type (medium screw base, GU, etc.), and lumen output. Using these strata definitions, we then examined the relative market shares of each stratum in order to identify the specific strata that account for the majority of LEDs lamps current available in retail stores. These strata are shown in Table 4-1below and accounted for 81% of the total retail availability in California in the winter of 2014 and beginning of 2015.

[^11]TABLE 4-1: SAMPLE STRATA AND THEIR RELATIVE MARKET SHARES IN LATE 2014/EARLY 2015

Lamp Type	Reflector Subtype	Base Type	Lumen Bin	Share of CA Market	Share within Lamp Type
A-LAMP	N/A	MSB (E26)	$201-400 \mathrm{Im}$.	2.1%	4.3%
A-LAMP	N/A	MSB (E26)	$401-600 \mathrm{Im}$.	15.1%	31.2%
A-LAMP	N/A	MSB (E26)	$601-800 \mathrm{Im}$.	13.9%	28.7%
A-LAMP	N/A	MSB (E26)	$801-1,000 \mathrm{Im}$.	7.2%	14.9%
A-LAMP	N/A	MSB (E26)	$1,001-1,200 \mathrm{Im}$.	3.5%	7.2%
A-LAMP	N/A	MSB (E26)	$1,401-1,600 \mathrm{Im}$.	2.8%	5.7%
GLOBE	N/A	MSB (E26)	$201-400 \mathrm{Im}$.	2.4%	31.7%
GLOBE	N/A	MSB (E26)	$401-600 \mathrm{Im}$.	4.5%	59.7%
TORPEDO	N/A	Candelabra (B10)	$1-200 \mathrm{Im}$.	2.7%	26.9%
TORPEDO	N/A	Candelabra (B10)	$201-400 \mathrm{Im}$.	7.2%	71.3%
TORPEDO	N/A	MSB (E26)	$201-400 \mathrm{Im}$.	2.0%	51.4%
REFLECTOR	BR30	MSB (E26)	$601-800 \mathrm{Im}$.	8.5%	94.0%
REFLECTOR	BR40	MSB (E26)	$1,001-1,200 \mathrm{Im}$.	1.4%	68.1%
REFLECTOR	PAR20	MSB (E26)	$401-600 \mathrm{Im}$.	1.1%	94.7%
REFLECTOR	PAR30	MSB (E26)	$601-800 \mathrm{Im}$.	1.7%	66.7%
REFLECTOR	PAR38	MSB (E26)	$801-1,000 \mathrm{Im}$.	1.4%	38.8%
REFLECTOR	PAR38	MSB (E26)	$1,001-1,200 \mathrm{Im}$.	1.3%	36.9%
REFLECTOR	R20	MSB (E26)	$401-600 \mathrm{Im}$.	2.7%	99.8%

In order to support the research objectives summarized in Section 2.2, we developed a sample design of specific lamp models within each sample stratum such that roughly 50% of the models are compliant with the CA Quality Spec and ENERGY STAR-certified, 25% are ENERGY STAR-certified but not compliant with the CA Quality Spec, and 25% are the least expensive, non-ENERGY STAR products available. Within these general three categories, we used the approach summarized below to select the specific lamp models to be procured and tested:

- CA Quality Spec-compliant:
- These products were identified using IOU-approved product lists.
- If the IOUs currently do not offer products in a given sample stratum, then CA Quality Speccompliant products were identified using Lighting Facts listed on the product's packaging.
- Where market share data is available, the highest market-share models were identified using the RLSS.
- ENERGY STAR-certified, but not CA Quality Spec-compliant:
- These products were identified using Lighting Facts
- The highest market-share models were identified using the RLSS
- Least expensive, non-ENERGY STAR-certified:
- These products were identified using the ENERGY STAR field in the RLSS and verified using the ENERGY STAR-qualified product lists
- The least expensive, highest market-share models were identified using the RLSS

This process was followed to develop a model-level sample design that was representative of the current California market for screw-based LED lamps and allows comparative analysis between cohorts of CA Quality Spec-compliant, ENERGY STAR-certified but not CA Quality Spec-compliant, and non-ENERGY STAR-certified LED products. Following the development of this model-level sample design, the next step was to begin procuring multiple units of each model identified in the sample design to use in the testing regime described in Section 3.

4.2 SAMPLE PROCUREMENT

We procured all of the LED test lamps for this study "off the shelf" (i.e., via retailers), as opposed to via direct procurement from manufacturers. Several stakeholders, notably NRDC and SCE, noted the importance of using "off the shelf" procurement for this effort to eliminate the possibility of bias stemming from manufacturers providing test units directly (as is the case with current testing procedures for ENERGY STAR certification and the USDOE's LED Lighting Facts program).

The predecessor CFL lab test study also used an "off the shelf" procurement approach that used field staff to physically purchase test lamps at a sample of retail stores that was representative of the distribution of CFL sales across geographies and retail channels in California. Given the relative price premium for LED lamps (compared to CFLs), we wanted to explore opportunities to reduce procurement costs for this effort by leveraging direct online procurement (with shipping direct to testing facility to also save time) wherever possible. ${ }^{25}$

The first step in our procurement process was to verify online availability of all lamp models identified in our sample design. Nearly all of the models included in our initial sample design were indeed immediately available for purchase from online retailers, with a small number of exceptions. Specifically, five models targeted in our sample design had been discontinued by the manufacturers since the time of the 2015 RLSS. For three of these models, we were able to use manufacturer product catalogs to identify

[^12]"successor" models that featured the same product characteristics, i.e., lamp type, base type, lumen output, CRI, color temperature, dimmability, and ENERGY STAR/non-ENERGY STAR certification. For the other two discontinued models, we were not able to clearly identify "successor" models, so those models were dropped from our sample design.

Once this verification process was complete, Itron procurement staff then began purchasing in-sample models with shipping directly to the test lab. During this procurement process, three specific in-sample models were temporarily out of stock. In these cases, in order to avoid calendar delays, Itron procurement staff purchased "backup" models that had been previously identified during the sample design process. Procurement began in mid-September 2015 and concluded in mid-November 2015.

Finally, it should be noted that the majority of the CA Quality Spec-compliant models were not available for online purchase, due to their availability being limited to California. For these models, IOU program staff procured the test models on behalf of the study team directly at brick-and-mortar retailers that participate in the IOUs' respective upstream lighting programs and shipped those units directly to the testing facility.

4.3 FINAL TEST SAMPLE

Table 4-2 below summarizes the final sample of LED lamps procured by Itron and the IOUs, and how those lamps were installed for testing by fixture type. The table also includes the estimated market shares of the specific models procured in each stratum based on the 2015 RLSS data. In total, the final test sample included 627 individual lamps covering 92 lamp models and 39 individual trim kits covering 13 trim kit models. The estimated market share of final sample of LED lamps is 44% of the total LED lamp market in California and 53% of the in-scope lamp market. ${ }^{26,27}$ Note that the market share estimates in Table 4-2 are necessarily an underestimate of actual market shares, since the vast majority of the CA Quality Speccompliant lamp models were not available in retail stores at the time of the 2015 RLSS.

[^13]
Itron

TABLE 4-2: SUMMARY OF FINAL TEST SAMPLE OF LED LAMPS AND DOWNLIGHT RETROFIT TRIM KITS

Lamp Type	Reflector Subtype	Base Type	Lumen Bin	Models	Units Tested in:			Market Shares:		
					Bare Sockets	Recessed Downlights	Enclosed Ceiling Fixtures	Total CA	Final Sample	Intra-Strata
A-LAMP	N/A	MSB (E26)	201-400 Im.	4	12	12	12	2.6\%	1.3\%	51\%
A-LAMP	N/A	MSB (E26)	401-600 Im.	10	30	30	30	18.5\%	7.4\%	40\%
A-LAMP	N/A	MSB (E26)	601-800 Im.	10	30	30	30	17.0\%	8.1\%	47\%
A-LAMP	N/A	MSB (E26)	801-1,000 Im.	5	15	15	15	8.9\%	1.2\%	13\%
A-LAMP	N/A	MSB (E26)	1,001-1,200 Im.	5	15	15	15	4.3\%	2.8\%	64\%
A-LAMP	N/A	MSB (E26)	1,401-1,600 Im.	4	12	12	12	3.4\%	2.3\%	67\%
GLOBE	N/A	MSB (E26)	201-400 Im.	4	12	0	0	3.0\%	1.6\%	55\%
GLOBE	N/A	MSB (E26)	401-600 lm.	5	15	0	0	5.6\%	5.3\%	95\%
TORPEDO	N/A	Candelabra (B10)	1-200 Im.	4	12	0	12	3.3\%	1.4\%	42\%
TORPEDO	N/A	Candelabra (B10)	201-400 Im.	6	18	0	18	8.8\%	5.9\%	66\%
TORPEDO	N/A	MSB (E26)	201-400 Im.	4	12	0	0	2.4\%	1.5\%	64\%
REFLECTOR	BR30	MSB (E26)	601-800 Im.	8	24	24	0	10.4\%	6.8\%	65\%
REFLECTOR	BR40	MSB (E26)	1,001-1,200 Im.	3	9	9	0	1.7\%	1.0\%	58\%
REFLECTOR	PAR20	MSB (E26)	$401-600 \mathrm{~lm}$.	4	12	12	0	1.3\%	0.8\%	57\%
REFLECTOR	PAR30	MSB (E26)	601-800 Im.	4	12	12	0	2.1\%	1.6\%	75\%
REFLECTOR	PAR38	MSB (E26)	801-1,000 Im.	4	12	12	0	1.7\%	1.5\%	88\%
REFLECTOR	PAR38	MSB (E26)	1,001-1,200 Im.	4	12	12	0	1.6\%	1.0\%	62\%
REFLECTOR	R20	MSB (E26)	401-600 Im.	4	12	12	0	3.3\%	2.6\%	80\%
TOTAL TEST LAMP SAMPLE				105	276	246	144	100\%	53.9\%	N/A
TRIM KITS	$4{ }^{\prime}$	N/A	N/A	6	0	18	0	N/A	N/A	N/A
TRIM KITS	$6 "$	N/A	N/A	7	0	21	0	N/A	N/A	N/A

4.4 TEST SAMPLE PREPARATION

Upon receipt of the test sample, staff at the testing facility prepared the test lamps and trim kits for the testing regime described in Section 3. This sample preparation process followed three specific steps:

- First, the model numbers of each test sample received were verified against the model numbers in the shipping invoice and the final sample design. The rated performance of each test sample (as shown on product labels) was also recorded, i.e., rated lumens, wattage, CRI, color temperature, and dimmability.
- Second, each test sample was labeled with a unique bar code on the lamp/trim kit itself. These bar codes allowed each test sample to be accurately tracked in terms of status and location and correctly associated with individual data streams from the photometric, thermal, and maintenance tests.
- Lastly, each sample was tested to verify basic functionality, i.e., whether the sample turned on when connected to a live socket. This step was necessary in order to screen for non-functional units. In one case, testing facility staff verified that a non-functional test sample was indeed shipped and received. In this case, staff removed that sample from the testing regime and prepared a backup sample of the same model. ${ }^{28}$

Once all test samples were received, labeled, and basic functionality verified, they were then subjected to initial photometric testing as well as thermal testing. The long-term maintenance testing was initiated following the conclusion of the thermal testing (which was used to determine the control zone groups and timing parameters to which individual lamps/fixtures would be assigned).

[^14]
5 RESULTS

This section presents the summarized results from the thermal, photometric, and maintenance testing. Also included here are the findings from a post-mortem forensic analysis on the lamps that experienced catastrophic failure during maintenance testing. The complete set of empirical results from the thermal, photometric, and maintenance tests are provided in Appendix A.

It is important to note that results for trim kits have been included here even though these products were a late add-on to a test design that was originally designed specifically for lamps. While we believe the results from trim kits are valid, there are notable differences in the designs of these products (e.g., more thermal mass), the applications in which they were tested (e.g., only in recessed downlights), and sampling (e.g., small sample of only 39 products representing 13 models; samples all procured via utility partner channels) that the reader should bear in mind when considering these results alongside those of other lamp types.

The thermal testing results presented here provide a high-level overview of the results of the thermal test. While these tests were primarily undertaken in order to establish the appropriate switching cycle timing for the maintenance test, the thermal test results themselves may have additional value. The discussion of the photometric results generally focuses on comparing the initial measured values of the test lamps to their rates values (e.g., measured CRI vs. rated CRI) as well as comparing changes in measured values between the initial testing period and the final testing period. The maintenance testing results focus exclusively on the failure rates observed over the 15-month testing period. ${ }^{29}$

5.1 THERMAL TESTING

As described in Section 3.2, the lamp surface temperature of each test lamp was monitored during the initial stages of this experiment, as well as the near-ambient air temperatures for a sub-set of the test lamps. These tests were primarily conducted in order to allow us to optimize switching cycle timing for the maintenance test, but the thermal testing itself also generated rich datasets, the highlights of which are briefly discussed below.

[^15]Figure 5-1 shows a histogram of the time required for test lamps to reach the 95% thermal stability point during warm-up (i.e., time required for lamps to reach 95% of their steady-state operating temperature after being switched on). This figure shows that most lamps reached 95% thermal stability within 60 minutes of operation while a small minority of lamps (primarily trim kits which have significantly more thermal mass) required over 100 minutes to reach 95% thermal stability.

FIGURE 5-1: HISTOGRAM OF WARM-UP TIMES FOR TEST LAMPS

Figure 5-2 shows a similar histogram for the cool-down times. The length and distribution of cool-down times were found to be slightly longer than warm-up times, with the majority of lamps reaching 95\% thermal stability within 80 minutes.

FIGURE 5-2: HISTOGRAM OF COOL DOWN TIMES FOR TEST LAMPS

Figure 5-3 shows the maximum lamp temperature recorded by lamp wattage and fixture type ($\mathrm{R}=$ Recessed Downlight, C = Ceiling Fixture, U = Base-Up Bare Socket, D = Base-Down Bare Socket), as well as the overall correlation coefficients between lamp wattage and maximum lamp temperature by fixture type. As expected, the highest lamp temperatures were found on higher wattage lamps in constrainedair fixtures, i.e., enclosed ceiling fixtures and recessed downlights. ${ }^{30}$ Perhaps more importantly, however, Figure 5-3 shows that maximum lamp temperatures for lamps in constrained-air fixtures exhibited a stronger correlation with wattage compared to lamps in bare sockets.

FIGURE 5-3: MAXIMUM LAMP TEMPERATURE VS LAMP INPUT POWER AND FIXTURE TYPE

[^16]Figure $5-4$ shows the near-ambient maximum air temperature measured by lamp wattage and fixture type. This figure shows that while air temperature inside each luminaire trends very strongly with lamp wattage, it does not vary significantly by fixture type. ${ }^{31}$ It should be noted that the near-ambient air temperatures shown below are in the same range as the ambient air temperatures specified in ENERGY STAR's current elevated temperature test $\left(55^{\circ} \mathrm{C}\right.$ for directional lamps over $20 \mathrm{~W}, 45^{\circ} \mathrm{C}$ for most other lamp types). These new near-ambient air temperature data may be useful to help further refine such screening tests by accounting for the strong ambient temperature/lamp wattage relationship shown below so that lamps are tested in ambient temperatures closer to what would be expected in the field.

FIGURE 5-4: NEAR AMBIENT AIR TEMPERATURE VS LAMP INPUT POWER AND FIXTURE TYPE

[^17]
5.2 INITIAL PHOTOMETRIC TESTING

Figure 5-5 shows the measured initial light output versus the rated light output for each lamp included in the test. Data points above the diagonal line indicate lamps that were found to produce more lumens than their rated values while those below the line produced less than their rated value. In this and subsequent graphs, results by particular lamp categories are indicated but different data point symbols.

FIGURE 5-5: RATED LIGHT OUTPUT (LUMENS) VS. MEASURED LIGHT OUTPUT (LUMENS)

Figure 5-6 shows the measured initial input power verses the rated power for each lamp included in the test. Data points above the diagonal line indicate lamps that were found to draw than their rated values while those below the line draw less than their rated value.

FIGURE 5-6: RATED POWER (W) VS. MEASURED POWER (W)

Figure 5-7 looks at initial measured versus rated luminous efficacy, which is essentially a combination of the results shown in Figure 5-5 and Figure 5-6. These three graphs show lamps in the test generally under reported light output (lumens) while over reporting power input (watts), resulting in an under reporting of efficacy (lm/W). This would seem to indicate for the majority of LED lamps, rated efficacy values can be expected to provide accurate or conservative values of actual performance.

FIGURE 5-7: RATED EFFICACY (LM/W) VS. MEASURED EFFICACY (LM/W)

Figure 5-8 presents the initial measured efficacy versus initial measured light output. This graph shows how lamps with higher light output tend to trend with higher efficacy.

FIGURE 5-8: MEASURED LIGHT OUTPUT (LUMENS) VS. MEASURED EFFICACY (LM/W)

Figure 5-9 shows the initial measured color temperature versus the rated color temperature for each lamp included in the test while Figure 5-10 shows the initial measured color rendering versus the rated color rendering. Again, data points above the diagonal line indicate that lamps that were found to have higher measured values than their rated values while those below the line were lower than their rated values.

FIGURE 5-9: RATED COLOR TEMPERATURE (CCT) VS. MEASURED COLOR TEMPERATURE (CCT)

FIGURE 5-10: RATED COLOR RENDERING (CRI) VS. MEASURED COLOR RENDERING (CRI)

Figure 5-11 shows initial measured color rendering versus initial measured efficacy. While this graph seems to show that while some lamps were able to maintain both a high efficacy and a high CRI, efficacy generally suffers at CRI is increased.

FIGURE 5-11: MEASURED COLOR RENDERING INDEX (CRI) VS. MEASURED EFFICACY (LM/W) BY LAMP TYPE

Figure 5-12 presents the same data as Figure 5-11 but now identified by CA Quality spec compliance rather than by lamp type. This figure shows that the two distinct clusters correlate almost completely with a lower-efficacy, higher-CRI CA Quality Spec group (average efficacy $=62.1 \mathrm{Im} / \mathrm{W}$, average CRI $=92.0$) and a higher-efficacy, lower CRI non- CA Quality Spec group (77.6 Im/W, 84.4 CRI). There are some notable occurrences of lamps that are listed as compliant with the CA Quality Spec, but were found to have CRI measurements below the 90 CRI CA Quality Spec requirements.

FIGURE 5-12: MEASURED COLOR RENDERING INDEX (CRI) VS. MEASURED EFFICACY (LM/W) BY CA QUALITY SPEC COMPLIANCE

5.3 FINAL PHOTOMETRIC TESTING

Following the conclusion of the maintenance testing, a second round of photometric testing was conducting on all surviving test lamps. These results were used primarily to examine changes in two key performance metrics - lumen maintenance and color shift.

Figure 5-13 presents the lumen maintenance values (i.e., the measured lumen output at the end of the maintenance test compared to the initial measured values) for the 535 lamps that survived maintenance testing (sorted by lowest to highest). LED lamps and luminaires are often considered to have "failed" once their lumen output drops below 70% of rated or initial output. As the figure shows, only 8 of the test lamps (1.5\%) that survived to the final photometric test crossed this threshold of decreased lumen maintenance. Indeed, Figure 5 - 13 shows that - generally speaking - lumen depreciation was not found to be a significant issue. In fact, most lamps (63\%) experienced an increase in light output between initial photometric testing and final photometric testing. It is well documented, including in IES LM-79 itself, that some LED sources will see an increase in light output during the first 1,000 hours of operation. But the fact that a wide majority of LED lamps in our test saw such an increase over the course of the maintenance testing is notable.

FIGURE 5-13: LUMEN MAINTENANCE RATES FOR ALL TEST UNITS

LEDs can also be considered to have failed if their light color has changed so significantly over time that they are no longer considered acceptable for the applications in which they have been placed. These color changes can be noticeable and objectionable if they are extreme and/or if light sources in the same field of view experience different changes in color. Figure 5-14 summarizes the change in correlated color temperature (CCT) values for the 535 lamps that survived maintenance testing (sorted from largest decrease to largest increase). ${ }^{32}$ As the figure shows, significantly more lamps (477 vs. 58) experienced an increase in CCT (a shift toward blue or green) compared to a decrease in CCT (a shift toward red). Generally speaking, however, most surviving lamps did not see a significant change in CCT, with 85% of lamps seeing a CCT shift of 100 K or less. Only 12 lamps (2.2%) experienced CCT shifts that might be considered noticeable/objectionable (i.e., >300 K).

FIGURE 5-14: COLOR SHIFT OBSERVED FOR ALL TEST UNITS

[^18]
5.4 MAINTENANCE TESTING

A significant portion of the lamps tested experienced catastrophic failure during our maintenance testing.
Table 5-1 provides a summary of the overall catastrophic failure rates observed during the maintenance testing.

TABLE 5-1: SUMMARY OF CATASTROPHIC FAILURE RATES OBSERVED BY LAMP-FIXTURE COMBINATION

Lamp Type	Lamp Specification	Total Lamps Tested	Total Catastrophic Failure Rate (\%)				
			Fixture Type				Total
			Ceiling	Recessed	Bare, Down	Bare, Up	
A-lamp	CEC and EStar	72	0\%	25\%	8\%	0\%	18\%
	EStar-only	144	56\%	44\%	35\%	55\%	48\%
	Not Estar	126	31\%	31\%	14\%	14\%	25\%
	All	342	40\%	35\%	22\%	27\%	33\%
Globe	CEC and EStar	3	-	-	0\%	50\%	33\%
	EStar-only	18	-	-	0\%	0\%	0\%
	Not Estar	6	-	-	0\%	0\%	0\%
	All	27	-	-	0\%	8\%	4\%
Torpedo	CEC and EStar	6	0\%	-	0\%	0\%	0\%
	EStar-only	21	0\%	-	0\%	0\%	0\%
	Not Estar	45	22\%	-	0\%	0\%	9\%
	All	72	13\%	-	0\%	0\%	6\%
Reflector	CEC and EStar	48	-	8\%	0\%	0\%	4\%
	EStar-only	78	-	8\%	0\%	0\%	4\%
	Not Estar	60	-	20\%	0\%	0\%	10\%
	All	186	-	12\%	0\%	0\%	6\%
Trim Kit	CEC and EStar	39	-	0\%	-	-	0\%
	EStar-only	0	-	-	-	-	-
	Not Estar	0	-	-	-	-	-
	All	39	-	0\%	-	-	0\%
Total	CEC and EStar	168	22\%	9\%	4\%	4\%	10\%
	EStar-only	261	47\%	28\%	15\%	21\%	28\%
	Not Estar	237	28\%	26\%	5\%	6\%	18\%
	All	666	35\%	21\%	9\%	12\%	20\%

As the table shows, 130 out of 666 lamps tested experienced catastrophic failures - representing a 20% overall catastrophic failure rate across all lamps tested. By lamp type, catastrophic failure rates were highest among A-lamps (33\%), with those tested in enclosed ceiling fixtures and recessed downlights experiencing the highest catastrophic failure rates observed across all lamp-fixture combinations tested (40% and 35%, respectively). The overall failure rates for globe, torpedo, and reflector lamps were all comparatively lower - between 6% and 4%. Notably, none of the downlight retrofit trim kits tested experienced catastrophic failure.

Comparing the catastrophic failure results across "lamp specification", Table 5-1 also shows that lamps that are compliant with the CA Quality Spec (labeled "CEC") experienced 10\% catastrophic failures (17 out of 168 units tested). ENERGY STAR-certified but not CA Quality Spec-compliant (labeled "EStar-only") lamps along with non-ENERGY STAR-certified lamps experienced relatively higher catastrophic failure rates (28% and 18%, respectively).

A small minority of the models included in our testing (11 out of 105 models) were explicitly labeled by their manufacturers as not being compatible with enclosed fixtures. However, as noted earlier in Section 3.2 , we chose to test those lamps in enclosed ceiling fixtures due to the likelihood that such compatibility information is not always followed by consumers. Of those 11 models, four models had test units experience catastrophic failure in enclosed ceiling lamps. However, it should also be noted that those same models had the exact same number of test units experience catastrophic failure in other fixture types (8 units across four models).

In addition to catastrophic failures where test lamps stopped working completely, lab technicians also observed and systematically recorded lamps that experienced "pre-failure" conditions, such as severe flickering and dramatically reduced light output (i.e., $<70 \%$ rated lumen output). In some cases, lamps that exhibited pre-failure conditions eventually experienced catastrophic failure. In other cases, such lamps continued to function through the duration of the maintenance tests. From a consumer perspective, we believe it is reasonable to treat such pre-failure lamps as equivalent to lamps that have catastrophically failed, since it is likely that consumers would replace such lamps as soon as pre-failure behavior manifests itself. To this end, Table 5-2 below provides a summary of lamps that exhibited pre-failure characteristics. As the table shows, 4% of all lamps tested exhibited pre-failure behavior but not catastrophic failure during the maintenance tests.

TABLE 5-2: SUMMARY OF PRE-FAILURE BEHAVIOR RATES OBSERVED BY ALL LAMP-FIXTURE COMBINATIONS

Lamp Type	Lamp Specification	Total Lamps Tested	Total Pre-Failure Behavior Rate (\%)				
			Fixture Type				Total
			Ceiling	Recessed	Bare, Down	Bare, Up	
A-lamp	CEC and EStar	72	0\%	8\%	0\%	0\%	3\%
	EStar-only	144	2\%	6\%	4\%	9\%	5\%
	Not Estar	126	5\%	7\%	10\%	0\%	6\%
	All	342	3\%	7\%	5\%	4\%	5\%
Globe	CEC and EStar	3	-	-	0\%	0\%	0\%
	EStar-only	18	-	-	0\%	13\%	6\%
	Not Estar	6	-	-	0\%	0\%	0\%
	All	27	-	-	0\%	8\%	4\%
Torpedo	CEC and EStar	6	0\%	-	0\%	0\%	0\%
	EStar-only	21	0\%	-	0\%	0\%	0\%
	Not Estar	45	11\%	-	7\%	8\%	9\%
	All	72	7\%	-	5\%	5\%	6\%
Reflector	CEC and EStar	48	-	0\%	0\%	0\%	0\%
	EStar-only	78	-	3\%	12\%	0\%	4\%
	Not Estar	60	-	0\%	0\%	17\%	3\%
	All	186	-	1\%	4\%	4\%	3\%
Trim Kit	CEC and EStar	39	-	0\%	-	-	0\%
	EStar-only	0	-	-	-	-	-
	Not Estar	0	-	-	-	-	-
	All	39	-	0\%	-	-	0\%
Total	CEC and EStar	168	0\%	2\%	0\%	0\%	1\%
	EStar-only	261	2\%	5\%	5\%	5\%	4\%
	Not Estar	237	7\%	4\%	5\%	6\%	5\%
	All	666	3\%	4\%	4\%	5\%	4\%

Taken together, Table 5-1 and Table 5-2 indicate that the bulk of the observed lamp "failures" (i.e., catastrophic failures and pre-failure behavior) were concentrated among A-lamps that are ENERGY STARcertified but not CA Quality Spec-compliant, and non-ENERGY STAR-certified lamps. However, it is important to understand that these failures were not evenly distributed across all ENERGY STAR and nonENERGY STAR lamp models that had test units fail. Indeed, quite the opposite is true. Figure 5-15 shows how more than two-thirds of all failures (86 out of 130) came from 12 specific models that performed particularly poorly, with 50% or more of the units from those models that were tested experiencing either catastrophic failure or pre-failure behavior (shown in black), while 15% of all failures came from 6 models where $25-49 \%$ of test units failed (shown in orange), and 19% of all failures came from 18 models where

1-24\% of test units failed (shown in green). Among poorest performing models (shown in black), one was ENERGY STAR-certified under the latest version of the ENERGY STAR product specification (v2.0), seven were ENERGY STAR-certified under the first version of (v1.0), and four were not ENERGY STAR-certified.

FIGURE 5-15: DISTRIBUTION OF LAMP MODELS RELATIVE TO THE NUMBER OF FAILED TEST UNITS PER MODEL

Apart from the magnitude of the overall failure rates observed in our testing and their concentration in A-lamps, the highly "clustered" nature of the observed failures is clearly also a key finding of this study. Indeed, the concentration of failures within a minority of specific models is a critical factor to take into account when interpreting our overall results.

In addition to the overall failure rates, it is also important to look at the associated temporal dynamics. In the lighting research literature, this is commonly accomplished in the form of "survival curves" which plot cumulative failures (in terms of percent of lamps surviving) over time. Below, we present three survival curves that summarize the observed failure rates over time - first by lamp type (Figure 5-16), then by fixture type (Figure 5-17), and finally by lamp type-fixture type combinations (Figure 5-18).

The primary objective of plotting results as survival curves is to identify, where possible, temporal patterns in failure rates. In this respect, it is important for readers to recall that due to the nature of our experimental design, lamps or fixtures of a common type were not necessarily on the same control circuit and therefore did not necessarily experience the same amount of total on-time during the maintenance test (since the switching cycles were determined by thermal cycle length, not lamp or fixture type). As
such, our survival curves include a vertical orange line at hour 2,818 to indicate the minimum total ontime experienced by all lamps in the test. In this sense, the temporal trends across lamp and fixture type aggregations are strictly comparable to the left of the orange line. In contrast, the temporal trends to the right of the orange line are not strictly comparable across lamp and fixture type aggregations, and readers should use caution when interpreting any temporal patterns that may be implied. ${ }^{33}$

Figure 5-16 presents the survival curves by lamp type. The figure shows that A-lamp failures accelerated between 500 and 1,500 hours of on-time and then continued at a fairly steady rate. Reflector lamps and torpedo lamps experienced fairly steady rates of failure throughout the maintenance test, and globe lamps experienced no failures after the first 940 hours of on-time. Trim kits experienced no failures at all.

FIGURE 5-16: SURVIVAL CURVES BY LAMP TYPE

33 The comparability issue stems from aggregating data across lamps on different switching cycles. This results in a data series that reflect the longest total on-time experienced by any lamp of a given type and masks lamps that had shorter total on-times due to differences in the lengths of their respective switching cycles. This same phenomenon arises when aggregating across fixture type and lamp-fixture combinations.

Figure 5-17 presents the survival curves by fixture type. This figure shows that lamp failures within enclosed ceiling fixtures and recessed downlights accelerated between 500 and 1,500 hours of on-time and then continued in a more linear fashion. Lamps in base-up bare sockets experienced fairly steady failure rates. Interestingly, lamps in base-down bare sockets experienced the bulk of their total failures between 1,400 hours and 2,000 hours of on-time.

FIGURE 5-17: SURVIVAL CURVES BY FIXTURE TYPE

Figure 5-18 presents the survival curves by lamp type-fixture type combination. This figure separates some of the specific lamp/fixture combinations that exhibit distinct temporal dynamics. For example, the figure shows that while the failure rate for A-lamps in enclosed ceiling fixtures and recessed downlights accelerates between 500 and 1,500 hours of on-time, the failure rate for A-lamps in bare sockets accelerates only after 1,500 hours of on-time and appears to stabilize around 2,000 hours.

FIGURE 5-18: SURVIVAL CURVES BY LAMP TYPE-FIXTURE TYPE COMBINATIONS

5.5 REGRESSION ANALYSIS OF FAILURE RATES

Given the wide range of LED lamps, lamp-fixture combinations, and switching cycles that were included in this study, we also sought to isolate the impact of individual variables (e.g., wattage, lamp temperature, thermal cycle length, and lamp-fixture combinations) on observed failure rates. To do this, we conducted a regression analysis using the data generated by the experiment. The methods and findings from this regression analysis are presented below.

Because lamp failure is a binary variable (i.e., either failed or not failed), we concentrated on developing a logit model specification for our regression analysis. In logit models, the dependent variable is expressed as an "odds ratio" or the probability that the event (i.e., lamp failure) will occur as a function of a given set of independent variables. In this respect, we developed regression models that attempted to explain the probability of lamp failure as a function of independent variables such as wattage, lamp temperature, etc.

We tested over 20 different logit model specifications using various combinations of initial photometric characteristics, thermal characteristics, switching cycle length, and dummy variables representing lamp type, fixture type, lamp-fixture combinations, and CA Quality Spec compliance as independent, explanatory variables. Overall, our initial logit models achieved what could be described as "poor to moderate" levels of model fit, with the highest maximum rescaled R -squared values converging around $0.63 .{ }^{34}$ In order to test whether the clustering of failures within specific models was impacting the explanatory power of our models, we also re-estimated models after removing the results for certain cohorts, including all models with 100% failures, all A-lamps, etc. While these "no outliers" models resulted in better levels of model fit, the sign and significance of some independent variables changed in counter-intuitive ways, suggesting that the "outlier" observations included some critical information that should not be disregarded. The complete set of results for the best-performing model specifications are presented in Appendix C.

Overall, the moderate levels of model fit that we were able to achieve indicates that even our best performing regression results are not likely robust enough to be considered conclusive for predictive purposes (i.e., using the estimated coefficients for predictive analysis). However, it is important to note that the modeling exercise did yield some consistent findings, namely:

- The estimated coefficients for warm-up time, max lamp temperature, on-hours per day, and CA Quality Spec compliance were consistently statistically significant with intuitively correct signs across all model specifications that included those variables
- Power, power factor, CRI, lumen output, efficacy, thermal cycles per day, luminaire type, lamp type, and labeled fixture compatibility were not significant explanatory variables ${ }^{35}$

[^19]For the former set of "stable" variables (i.e., max lamp temperature, on-hours per day, and CA Quality Spec compliance), Table 5-3 provides a summary of the estimated coefficients for those variables, their pvalues, and a translation of the estimated coefficients into the change in likelihood of failure due to a unit change in that variable. The table provides the range of each value across our seven best-performing logit models. We provide ranges rather than point estimates in order to illustrate the degree to which our results varied across model specifications, while providing readers with an indication of the relative magnitude of impact of each variable on the odds ratio or likelihood of failure.

TABLE 5-3: SUMMARY OF ESTIMATED COEFFICIENTS FOR "STABLE" VARIABLES ACROSS BEST-FITTING MODELS

Parameter (units)	Estimated Coefficients	P-Values	Marginal Change in Likelihood of Failure per Unit Change in Parameter
95\% Warm-Up Time (minutes)	-0.0517 to -0.0322	0.0002 to 0.0253	-5.04% to -3.17%
Maximum Lamp Temperature (${ }^{\circ} \mathrm{C}$)	0.03 to 0.0603	0.0003 to 0.0832	3.05% to 6.22%
Number of On-Hours per Day (hrs/day)	0.5157 to 0.7878	0.0003 to 0.002	67.48% to 119.86%
CA Quality Spec Compliant (binary)	-2.9289 to -1.0324	$<.0001$ to 0.0098	-94.65% to -64.38%

Note that values in the right-hand column of Table 5-3 should be interpreted as the change in likelihood of failure that results from a one-unit change in the parameter value. For example, the estimated coefficient for warm-up time should be interpreted as "for every one-minute increase in warm-up time, the likelihood of failure decreases by 3.2% to 5.0%." For the CA Quality Spec compliance variable, the estimated coefficient should be interpreted as "for lamps compliant with the CA Quality Spec, the likelihood of failure decreases by 64% to 95% compared to lamps not compliant with the CA Quality Spec." This particular result should be interpreted carefully, since - as we noted earlier in this section - we found that CRI and power factor (in isolation) were not significant explanatory variables. In other words, the coefficient for the CA Quality Spec compliance variable should be interpreted as the combined effect of all its differentiating features (CRI, power factor, warranty, dimmability, and noise) and not driven or attributable to any one specific feature.

5.6 POST-MORTEM FORENSIC ANALYSIS OF FAILED LAMPS

Following the conclusion of the maintenance testing, most of the failed test lamps were sent to a second laboratory for post-mortem forensic analysis in order to determine the exact point of failure, wherever possible, and how those failure points were or were not related to elevated operating temperature and/or
thermal cycling. ${ }^{36}$ The complete stand-alone report from this post-mortem analysis is provided in Appendix D. For the sake of brevity, the main methods and key findings are summarized below.

5.6.1 LED Drivers and LED Modules

Before presenting the methods of findings of the forensic analysis, it may be helpful to review the basics of LED lamp construction and functionality. Most LED lighting devices use a driver to convert mains electricity to the proper voltage and current necessary to capitalize on the efficiency of LEDs. These drivers are typically constant current providers, meaning that the driver will vary the voltage across its load (i.e., the LEDs) to maintain a constant electric current. A constant voltage and current supply is essential to these devices because it maintains regulated light output and ensures device reliability. These drivers rely on an integrated circuit (IC) controller to operate a transistor. ${ }^{37}$ The transistor is responsible for regulating the device, and it achieves this by switching on and off at high frequency.

An LED module is an assembly of LED packages (i.e., individual or clusters of LED chips), on a printed circuit board and additional thermal, mechanical, and electrical interfaces to connect to the load side of an LED driver. Interruption of the electrical or thermal connections provided by the LED module could result in abrupt failure of the device. Additionally, loss of contact between the module and individual LEDs or LED packages (e.g., in the way of solder failure) would also be detrimental to the operation of the LED lamp.

5.6.2 Methods

A three-step analysis process was used to identify the point of failure for each failed LED lamp. These three steps involved: 1) initial inspection and disassembly; 2) interior inspection; and, 3) electrical continuity testing of key components. Although this method has been very successful at identifying LED device failure location in the past, the failed lamps examined herein had a much lower component failure rate than expected. Therefore, additional analysis beyond the main three-step process was performed to identify the location of the failure. This additional analysis included some thermal, electrical, and surface composition testing. Because many failures were localized to the LED module, scanning electron microscopy (SEM) was also used to determine the surface texture and composition of LED solder joints and the LED contacts and pads (when applicable).

[^20]
5.6.3 Results

The location of test lamp failure was investigated for 26 LED lamp models, which consisted of a total of 84 failed test lamps. In addition to the 84 failed devices, another 15 devices that were prone to fail intermittently or otherwise exhibit pre-failure behavior were also analyzed. Often, these devices operated without incident for minutes or hours, and then shut off.

Figure 5-19 summarizes the failure locations that were identified for all failed test examined in the postmortem forensic analysis. Failure location is sorted into the following three main categories: 1) LED module failures, 2) driver failures, and 3) unknown failures. As the figure shows, LED module failure was the most prevalent failure location for the test lamps in this study (67\%). Failures that occurred on the LED module could be further classified by whether the failure was abrupt or because of an intermittent contact issue. For two of the devices that experienced LED module failure, the failure location was not classified as abrupt or intermittent. The failure location for these devices was classified as an abrupt/intermittent failure to account for the uncertainty in whether the device was damaged during disassembly.

FIGURE 5-19: FAILURE LOCATION BY CATEGORY FOR TEST LED LAMPS

Failures that occurred on the LED driver were classified into six categories that correspond to the main circuit types in LED drivers and their associated components (i.e., inductors, capacitors, resistors, diodes, etc.). These categories are: 1) pre-filter and condition, 2) switched-mode control, 3) filter and condition, 4) final filtering, 5) DC regulation failure, and 5) multiple failure locations. These six categories, except for DC regulation failure, pinpoint an exact location on the driver where failure location occurred. Finally, the location of failure for two devices could not be determined through our tests; therefore, the assignment
of failure location for these devices was classified as unknown. In the subsections below, we provide more detail of the forensic results within LED module failures and LED driver failures.

LED Module Failures

Signs of complete LED package solder failure (i.e., a loose LED in the globe) were noted, if possible, before disassembly. In two cases, it was difficult to determine whether the LED solder failed before disassembly. ${ }^{38}$ Other LED packages on these failed devices had such brittle solder that simply touching them, or the shock of removing the globe, caused complete solder failure. Brittle solder joints were prevalent in specific model numbers and, in some cases, particular LEDs within that model number. This problem suggests that there was a manufacturing or design issue. Drivers with a boost topology were most likely to have LED modules that experienced complete LED solder failure (Figure 5-20a). ${ }^{39}$ In two cases, an abrupt failure occurred even when all LED packages still appeared to be attached to the module (Figure 5-20b). In these cases, the encapsulant had become dislodged, leaving behind a black carbon residue. Subsequent LED failure resulted.

FIGURE 5-20: EXAMPLES OF (A) LED SOLDER FAILURE AND (B) LED FAILURE

[^21]The remaining LED module failures were determined through electrical tests. These tests showed that failure was not introduced at any point within the driver and must be within the LED module. Although the electrical test did not reveal an exact failure location on the LED module, there is strong evidence to support that solder embrittlement and contact oxidation led to lower device performance (Figure 5-21). We believe that these failures were at least partially the result of high, localized heat near the LED packages that resulted in the formation of intermetallics (i.e. alloys) in the solder and soldered surface metals. Such intermetallics are known to be brittle and can introduce micro-cracks into the solder joints. In particular, many of these lamps used gold pads as solder surfaces, and it is well known that gold dissolves in many solders to form brittle intermetallics. The dissolution of gold into solder often occurs as early as the manufacturing process (i.e. when the solder is solidifying) and progresses as the device is operated at high temperatures for prolonged periods of time. The latter of these occurrences is more responsible for solder embrittlement.

FIGURE 5-21: SEM IMAGES OF (A) AN LED CONTACT PAD SHOWING EMBRITTLEMENT, INHOMOGENEOUS CONTACT SURFACE, AND ALLOY WHISKERING; AND (B) AN LED WITH AN INHOMOGENEOUS CONTACT SURFACE

LED Driver Failures

Typical continuity failures (that lead to abrupt failures) included through-hole solder failure and localized signs of heat stress near the transformer and metal-oxide semiconductor field-effect transistor (MOSFET) components (Figure 5-22). Other through-hole solder failure (e.g., capacitors, inductors, power lines), as well as open fuses, broken diode bridges, or any combination thereof, were also found. Through-hole failures were often manifested as visible cracks in the solder joint, often cylindrical in nature (see Figure 5-22). In some instances of through-hole failure, the solder joint fractured completely, and the lead
separated from the joint (see Figure 5-22a). The continuity failures were likely the result of repeated thermal expansion induced by switching cycles in the switched-mode control and final filtering stages, as evidenced by the large number of transformer to MOSFET and inductor to MOSFET solder failures and localized signs of heat stress on the driver at these locations (Figure 5-22c).

FIGURE 5-22: EXAMPLES OF MAJOR CONTINUITY FAILURES FOR LED DRIVERS: (A) CAPACITOR SOLDER FAILURE, (B) TRANSFORMER SOLDER FAILURE, AND (C) MULTIPLE SOLDER AND COMPONENT FAILURE (TRANSFORMER AND CAPACITOR SOLDER FAILURES WITH LOCALIZED HEAT STRESS ARE SHOWN)

While most of the LED driver failures were because of discontinuity and component failures (see Figure $5-19)$, approximately one-fourth of the failed drivers were DC regulation failures. This failure mode was detected and assigned when the output voltage of the test driver (connected to the control LED module load) was much lower than the voltage necessary to operate the control LED module (as determined by the control driver). Notably, the tested electrical components on these drivers passed initial continuity and electrical tests. However, there could have been an undetected component failure that rendered the driver incapable of regulating direct current at the proper level when power was supplied. It is hypothesized that localized heat around the transformer and inductor, respectively, and MOSFET damaged the control IC. Most IC controllers among the tested lamps contain a temperature sensor that reduces current when the temperature is too high. Further investigation was not pursued regarding whether the IC controller itself failed or whether some other component failure caused the DC regulation failure.

5.6.4 Summary of Findings

In this post-mortem forensic analysis of LED lamps that failed during maintenance testing, an examination of the failed test devices revealed a clear correlation between model number and failure location and between driver topology and failure location. It was also found that the percentage of driver component failures (approximately 24%) was less than expected and that most failures (67\%) occurred on the LED module. These results were surprising because we anticipated that more test lamps would experience driver component failure than LED module failure. Upon examination of devices that failed intermittently,
we found that more devices experienced driver component failures (66\%) than LED module failures (20\%). However, failure location did not change for intermittent devices produced by the same manufacturer and with the same driver topology. Therefore, for LED lamps, we postulate that the rate for LED module failure is higher than the rate for driver component solder or functionality failure under the conditions used in the maintenance test, as described in Section 3.4.

An examination of the failed lamps also revealed that the driver and LED modules often failed because of a solder or contact issue; we have identified high-stress locations where manufacturers can improve the solder technique. In particular, drivers were susceptible to through-hole component solder failuretransformer and MOSFET solder joints were often damaged because of localized heating around these components. Additionally, solder technique could be improved between the LED packages and the LED modules. By improving solder technique in these high-stress areas, it is likely that manufacturers could improve LED lamp lifetime substantially and capitalize on the robustness of individual LEDs. Such actions would benefit LED-device manufacturers and their customers and would also provide benefits to lighting industry stakeholders in California including taxpayers, municipalities, and utilities.

6 SUMMARY AND DISCUSSION

The key empirical results from each element of our overall testing experiment, along with the key findings from our related analyses of the results are summarized below.

- Initial photometric testing:
- Measured values of lighting performance were largely consistent with rated values.
- Where deviations from rated values occurred, these deviations were mostly in the preferable direction from an energy efficiency point of view, i.e., lower power, higher lumen output, higher efficacy, etc.
- On average, the measured efficacy of CA Quality Spec lamps was 20% lower compared to that of non-CA Quality Spec lamps (62 vs. 77 lumens/W).
- Maintenance testing:
- 24% of the units tested (160 out of 666) either failed catastrophically or exhibited "prefailure" behavior within a maximum of 4,500 hours of total on-time.
- Failure rates were highest among A-lamps (38\%), while failure rates for globe, torpedo, and reflector lamps were comparatively lower (between 9% and 12%).
- None of the trim kits tested failed catastrophically or exhibited "pre-failure" behavior.
- Two-thirds of all failures came from 12 specific models that performed particularly poorly.
- Final photometric testing:
- Only 8 of the test lamps (1.5\%) that survived maintenance testing experienced decreases in light output of 30% or more.
- Only 12 of the test lamps (2.2%) that survived maintenance testing experienced changes in color temperature that might be considered noticeable/objectionable.
- Regression analysis:
- Logit regression modeling of the probability of failure as a function of initial photometric characteristics, thermal characteristics, switching cycle length, and various dummy variables could only explain up to 65% of the variation in the observed probability of failure.
- The logit models yielded consistent findings related to the explanatory power of certain independent variables, namely:
- Warm-up time, max lamp temperature, on-hours per day, and CA Quality Spec compliance were consistently statistically significant explanatory variables with intuitively correct signs.
- Power, power factor, CRI, lumen output, efficacy, thermal cycles per day, luminaire type, lamp type, and labeled fixture compatibility were not significant explanatory variables.

- Post-mortem forensic analysis:

- The most common points of failure were related to contact failures from poor or degraded solder connections that were consistent with high heat operation and repeated expansion and contraction due to operating temperature changes from switching.

6.1 DISCUSSION

Overall, the results produced by this study provide strong evidence that two stress conditions commonly found in residential homes - thermal cycling from repeated switching and elevated operating temperature due to restricted airflow and relative lamp position within the luminaire - are indeed significant stress conditions that can lead to early catastrophic failures in LED lamps. The temperaturerelated stress testing used in our study resulted in an overall failure rate of 24% over a maximum of 4,500 hours of total on-time across a large, representative sample of LED lamps available in California procured in late 2015.

While the test lamps in our study were operated at temperatures explicitly designed to approximate field conditions (through testing in typical residential fixtures), the switching cycles used in our stress testing were not explicitly designed to reflect common or typical switching patterns in the field. Rather, the switching patterns used in our study were designed to maximize the number of complete thermal cycles that test lamps could be subjected to within a fixed amount of calendar time. In this sense, the overall failures rates observed in this study should not be interpreted as those that would be reasonably expected from typical residential applications in the field. It should be noted, however, that the thermal cycles used for our stress testing were not exceedingly long. Over half of the lamps tested were determined to have thermal cycles of one hour or less of continuous on-time and over 90% of the lamps tested exhibited thermal cycles of 90 minutes or less of continuous on-time. In this sense, the switching patterns used to produce "full" thermal cycles in our study were short enough that one can easily imagine a significant portion of actual switching patterns in residential homes producing such "full" thermal cycles. To be clear, it was not the objective of this study to simulate the typical switching patterns in California homes or their impact on LED lamp life - largely because the primary data needed to conduct such a simulation is currently not available - and our results should not be interpreted as such. Nonetheless, the magnitude of the overall observed failure rates (24%) and the fact that nearly all of the thermal cycles used for our stress testing required less than 90 minutes of continuous on-time strongly suggest that this failure mode should be explicitly considered in the ex-ante EUL assumptions for LED lamps. From an energy efficiency program planning and evaluation perspective, even minor adjustments to the ex-ante EUL assumptions (based on rated values) may have an important impact on lifecycle savings and cost-effectiveness
estimates. While developing such EUL adjustments was beyond the scope of this study, the results represent an important empirical foundation for more formal EUL adjustments.

Our results also show that a significant portion of observed failures were concentrated in a few specific lamp models, the majority of which were ENERGY STAR-certified products. A post-mortem forensic analysis of these failed lamps indicated that the most common points of failure were related to contact failures from poor or degraded solder connections - both on the LED driver and, surprisingly, on the LED modules themselves - that were consistent with high heat and repeated thermal expansion and contraction. Taken together, these findings suggest that the certification tests currently employed by ENERGY STAR either do not adequately address two common field conditions (i.e. operating temperature and switching patterns) and/or that certain models have latent manufacturing defects that are exposed as a result of our experimental design. The corollary to this is that we believe the results from this study indicate a distinct opportunity to augment or supplement current standardized performance tests with short-run reliability tests focused on temperature-related early failure modes that could help detect the type of poor-performing models identified in this study. This short-run reliability test could potentially resemble a scaled-down version of this study and could be administered under ENERGY STAR or funded by California IOUs every 2-3 years.

6.2 KEY FINDINGS RELATIVE TO PRIMARY RESEARCH QUESTIONS

Below, we reframe the key findings and discussion presented above relative to the primary research questions originally set forth for this study in the 2013-2014 EM\&V Roadmap for Lighting.

How does switching LED lamps on/off impact the life and performance of the LED lamps?

As discussed above, the results produced by this study provide strong evidence that two stress conditions commonly found in residential homes - thermal cycling from repeated on/off switching and elevated operating temperature due to restricted airflow and relative lamp position within the luminaire - are indeed significant stress conditions that can lead to early catastrophic failures in LED lamps. A postmortem forensic analysis of failed lamps indicated that the most common points of failure were related to contact failures from poor or degraded solder connections consistent with exposure to high heat and repeated thermal expansion and contraction (due to on/off switching patterns).

Are the manufacturers' specifications of LED rated life accurate?

Given the significant number of test lamps that experienced catastrophic failures or pre-failure behavior within 4,500 hours of total runtime and the fact that the operating temperatures and switching cycles used in our experiment were well within the operating temperatures and switching patterns one would expect in typical residential homes, we believe that the empirical data resulting from this study strongly suggest that, on average, manufacturers' current estimates of LED rated life are likely to be overstated.

However, we currently lack the primary data necessary to reasonably extrapolate our lab-based results to the population of LEDs installed in California homes and therefore cannot reasonably estimate the extent to which current LED rated life estimates are overstated (see recommendations below).

Are the IOUs' LED workpaper assumptions properly stated?

The key performance and reliability metrics that were examined in this study that are also used in the IOUs' LED workpapers are efficacy and EUL. For both of those metrics, the IOUs rely on manufacturers' rated values, but in slightly different ways.

For efficacy, the IOUs apply a product's (or product categories') rated efficacy to an ED-approved "delta watts" equation to determine the per-unit ex ante energy and peak demand savings. The photometric tests conducted for this study indicated that measured efficacy was largely consistent with rated efficacy. Where deviations from rated values occurred, these deviations were mostly in the preferable direction from an energy efficiency point of view, i.e., lower power input, higher lumen output, and higher efficacy. For efficacy, therefore, the IOUs' current workpaper assumptions for LEDs appear to be properly stated.

For EUL, the assumptions used in the IOUs' current set of LED workpapers (for the lamp types included in this study) are based on EUL values recommended by Energy Division and the Database for Energy Efficiency Resources (DEER) consultant team. These recommended values are based on the prevailing rated life estimates from manufacturers (by lamp type and wattage) in terms of total on-hours and then translated to years by dividing rated life by the DEER-recommended estimates of average annual hours of use by building type. Since the basis of current EUL values are still tied directly to manufacturers' rated life estimates, we believe that the empirical data resulting from this study strongly suggest that the DEERrecommended EUL values for LEDs are overstated and recommend conducting a survival analysis using our results in combination with data from the 2012 California Lighting and Appliance Survey (CLASS) to develop formal adjustments to the current ex ante EUL values for LED lamps. This recommendation is discussed in more detail below.

6.3 RECOMMENDATIONS FOR FUTURE WORK

With these key findings in mind, we outline our recommendations for future work below. These recommendations are designed to build upon the key findings and address the key uncertainties from this study.

Temporal Analysis of Failure Data

A detailed statistical analysis of the temporal data generated by this study was determined to be beyond the scope of this study, but potentially would be highly useful for developing a short-run reliability test. ${ }^{40}$ Specifically, the objective of such a temporal analysis would be to determine how much thermal cycling and/or total on-time is required to be able to reasonably project the failure rates that we observed through 4,500 hours of total on-time. We believe that it is critical to explore the extent to which it may be possible to use failure rates observed over relatively short time scales (e.g. 1,500 thermal cycles of 1 hour on/1 hour off, which would require 125 days of testing) to reasonably project failure rates over longer time scales.

Because this type of temporal analysis has direct implications for the potential development of short-run reliability tests, we strongly encourage the CPUC to coordinate any such analysis with ENERGY STAR and its stakeholders, in addition to California stakeholders.

Develop Primary Data on Installed Stock of Residential Fixtures and Luminaires

While the sample of LED lamps tested in our study was large and designed to be representative of the market in California, the specific fixtures that the test lamps were operated in were not representative. In this sense, a key uncertainty in this study is the degree to which the specific characteristics of the fixtures and luminaires used for our testing differ from those most commonly found in California homes. To be clear, the most recent CLASS includes data on lighting technology by fixture type and room type. Indeed, we used the population estimates from CLASS when selecting the fixture types to use in this study. However, the CLASS data do not include the type of fixture characteristics that would be needed to properly specify "representative" fixtures and luminaires for the purposes of temperature-related, standardized stress testing - particularly for air-constrained fixtures and luminaires that contributed to high operating temperatures. Such characteristics would include the diameter of the luminaire, luminaire material, and the relative lamp position within the luminaire.

We believe that expanding data collection scope of the upcoming In-Home Lighting Inventory and Metering Study (IHLIMS) to include this type of fixture characteristics data would have only a marginal impact on the relative cost of the overall IHLIMS effort, and we encourage the CPUC to consider such a scope expansion for the upcoming IHLIMS.

[^22]
Verify Operating Temperatures of Lamps in the Field

Similar to recommendation above, the operating temperatures measured in this study were based on test lamps in four specific luminaire models which are not necessarily representative of the most common fixtures and luminaires installed in California homes. In this respect, it is important to verify that the laboratory-based measurements of operating temperature reasonably approximate those that lamps experience in the field and develop a broader set of primary data on lamp operating temperatures across a wider array of lamp/fixture/luminaire combinations.

As with the fixture characteristics data discussed above, we believe that expanding IHLIMS's data collection scope to include spot measurements of lamp operating temperatures would have only a marginal impact on the relative cost of the overall IHLIMS effort, and we encourage the CPUC to consider such a scope expansion for the upcoming IHLIMS.

Develop Primary Data on Switching Patterns by Fixture Type

As discussed earlier in this section, the switching cycles used in our stress testing were not explicitly designed to reflect common or typical switching patterns in the field, and the lack of primary data needed to estimate average switching cycles in homes prevents us from directly assessing the "representativeness" of the switching cycles we used. In theory, the lighting loggers used in the most recent CLASS studies should have produced the data streams needed to estimate average switching cycle length (by fixture type and room type). Unfortunately, the lighting loggers used in previous CLASS studies (as well as many previous on-site studies of lighting in California and elsewhere) proved to be overly sensitive to flicker and other transient phenomena that affect the accurate measurement of on-off events. While it has been possible to develop data cleaning algorithms and approaches to correct for flicker and other measurement issues for the purposes of estimating total hours of use (HOU) per day, it does not appear tractable or cost-effective to attempt a similar data cleaning exercise for the purposes of accurately measuring lengths and distribution of actual switching cycles from the same data set.

Fortunately, a new generation of lighting loggers is now available that appears to be capable of discerning flicker and other transient phenomena from true on-off switching. Indeed, it is our understanding that the CPUC is already contemplating using advanced loggers for the upcoming IHLIMS in order to avoid the data cleaning and interpretations issues that have plagued past efforts. From this perspective, we strongly encourage the CPUC to also consider accurate measurement of switching cycle length as a key performance criterion when selecting and procuring loggers for the upcoming IHLIMS and expanding the scope of the IHLIMS to include estimation of average switching cycle length by fixture type and room type.

Develop Formal Adjustments to Ex Ante EULs for LED lamps in IOU programs

Finally, we believe that the results of this study represent an important empirical foundation for more formal adjustments to the current ex ante EUL values for LED lamps. While there are a handful of key
uncertainties in our study that could be addressed through expanded primary data collection (most likely as part of the upcoming IHLIMS), we also believe that the data generated in this study and the data currently available from the 2012 CLASS would enable a reasonable survival analysis to be conducted immediately. Indeed, SCE staff conducted a survival analysis for CFLs using the results of the previous CFL Lab Test Study and the logger data from the 2008 CLASS. ${ }^{41}$ We recommend that the CPUC conduct a survival analysis for LED lamps based on the same approach. If and when primary data from the upcoming IHLIMS become available, this survival analysis can be updated. However, given the highly dynamic nature of the LED market and LED programs in California, we do not recommend delaying a formal survival analysis.

[^23]
7 APPENDICES

APPENDIX A DETAILED RESULTS

Appendix A contains the complete set of detailed test results and is organized as follows:

- A1 - Test Sample Product Characteristics: These tables provide the main performance characteristics of each lamp and trim kit model procured for testing as labeled on product packaging and the verified compliance with the CA Quality Spec and/or ENERGY STAR product specifications.
- A2 - Thermal Testing Results and Switching Zone Assignment \& Timing: These tables provide the thermal testing results, resulting switching control zone assignments, and switching cycle characteristics for each test unit.
- A3 - Initial and Final Photometric Testing Results: These tables provide the detailed photometric testing results for each test lamps prior to the beginning of the maintenance test, as well as a second set of identical photometric results for each test lamps that was still operating normally at the end of the maintenance test.
- A4 - Early Failure Timing and Calculated Values: These tables provide the total on-time (or "burn time") experienced by each test unit, the time at which test units experienced catastrophic early failure, and the time at which test units began exhibiting pre-failure behavior. These tables also include select calculated values that describe key changes in photometric performance (i.e. efficacy, lumen maintenance, and color shift) for each test lamp that was still operating normally at the end of the maintenance test.

Sampling Criteria						Values as Found on Product Labels									Verified Compliance			
Model \#	Bulb Style	Reflector Subtype	Base Type	Lumen Bin	Make \#	Watts	Lumens	CRI	Color Temp	Rated Life	Energy Star	Dimmable	Exterior Rated	Fixture Compatability	CA Quality Spec	$\begin{gathered} \text { Energy Star } \\ \text { QPL v2.0 } \\ \hline \end{gathered}$	Energy Star QPL v1.4	$\begin{gathered} \text { Energy Star } \\ \text { QPL v1.1 } \end{gathered}$
1	A-LAMP	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	270	NOT LISTED	2700	15000	NO	YES	NO	CEILING FANS	NO	NO	NO	NO
2	A-LAMP	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	270	NOT LISTED	2700	15000	NO	YES	NO	CEILING FANS	NO	NO	NO	NO
3	A-LAMP	N/A	MEDIUM SCREW BASE	201-400 Im.	2	4.8	300	NOT LISTED	3000	25000	NO	YES	NO	NOT ENCLOSED	NO	NO	NO	NO
4	A-LAMP	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	350	NOT LISTED	5000	15000	NO	YES	NO	CEILING FANS	NO	NO	NO	NO
5	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	2	7.5	485	NOT LISTED	3000	25000	YES	YES	NO		NO	NO	NO	YES
6	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	2	7.5	500	NOT LISTED	3000	25000	YES	YES	NO	OK ENCLOSED	NO	NO	YES	NO
8	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	1	7	500	NOT LISTED	5000	25000	NO	YES	NO	?	NO	NO	NO	NO
9	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	10	8	450	NOT LISTED	2700	25000	NO	YES	NO	NOT ENCLOSED	NO	NO	NO	NO
12	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	5	6	450	NOT LISTED	2700	25000	YES	YES	NO	?	NO	YES	YES	NO
13	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	5	8.5	450	93	2700	25000	NO	YES	NO	?	NO	NO	NO	YES
14	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	2	7.5	485	92	2700	25000	Yes	Yes	NO	OK ENCLOSED	YES	NO	NO	YES
15	A-LAMP	N/A	MEDIUM SCREW BASE	$401-600 \mathrm{~lm}$.	2	7.3	485	92	2700	25000	Yes	Yes	NO	?	YES	NO	NO	YES
16	A-LAMP	N/A	MEDIUM SCREW BASE	401-600 Im.	5	6	450	NOT LISTED	5000	25000	YES	YES	NO	?	NO	NO	YES	YES
17	A-LAMP	N/A	MEDIUM SCREW BASE	$401-600 \mathrm{~lm}$.	6	6	450	NOT LISTED	2700	20000	NO	NO	NO	?	NO	NO	NO	NO
18	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	11	10	800	82	2700	25000	YES	NO	NO	NOT ENCLOSED	NO	NO	YES	YES
19	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	1	10.5	800	NOT LISTED	2700	15000	NO	YES	NO	NOT ENCLOSED	NO	NO	NO	NO
20	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	5	13.5	800	93	2700	25000	NO	YES	NO	?	NO	NO	NO	NO
22	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	5	9.5	800	NOT LISTED	2700	25000	YES	YES	NO	?	NO	YES	YES	YES
23	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	5	9.5	800	NOT LISTED	2700	25000	YES	YES	NO	?	NO	YES	YES	YES
24	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	8	12	800	NOT LISTED	2700	25000	YES	YES	NO	OK ENCLOSED	YES	NO	NO	YES
27	A-LAMP	N/A	MEDIUM SCREW BASE	$601-800 \mathrm{~lm}$.	9	10	800	90	3000	25000	Yes	Yes	NO	?	YES	NO	NO	YES
29	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	10	10.5	800	NOT LISTED	2700	25000	NO	YES	NO	NOT ENCLOSED	YES	NO	NO	YES
30	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	5	9	800	NOT LISTED	5000	25000	YES	YES	NO	?	NO	NO	NO	YES
31	A-LAMP	N/A	MEDIUM SCREW BASE	601-800 Im.	1	11	800	NOT LISTED	2700	25000	YES	YES	NO	NOT ENCLOSED	NO	NO	NO	YES
33	A-LAMP	N/A	MEDIUM SCREW BASE	801-1,000 Im.	1	\#N/A	NO	GENERAL PURPOSE	NO	NO	NO	NO						
36	A-LAMP	N/A	MEDIUM SCREW BASE	801-1,000 Im.	7	15	1650	NOT LISTED	5000	25000	NO	NO	YES	NOT ENCLOSED	NO	NO	NO	NO
37	A-LAMP	N/A	MEDIUM SCREW BASE	801-1,000 Im.	2	13.5	810	92	2700	25000	YES	YES	NO	NOT RECESSED	YES	NO	NO	YES
38	A-LAMP	N/A	MEDIUM SCREW BASE	801-1,000 Im.	2	9.5	810	92	2700	25000	Yes	Yes	NO	OK ENCLOSED	YES	NO	NO	YES
39	A-LAMP	N/A	MEDIUM SCREW BASE	801-1,000 Im.	5	11	815	NOT LISTED	2700	25000	YES	YES	NO	?	NO	NO	NO	YES
40	A-LAMP	N/A	MEDIUM SCREW BASE	1,001-1,200 Im.	2	13	1100	NOT LISTED	3000	25000	NO	YES	NO	NOT RECESSED	NO	NO	NO	YES
41	A-LAMP	N/A	MEDIUM SCREW BASE	1,001-1,200 Im.	7	13	1100	NOT LISTED	2700	25000	NO	NO	YES	?	NO	NO	NO	NO
43	A-LAMP	N/A	MEDIUM SCREW BASE	1,001-1,200 Im.	1	14	1100	NOT LISTED	2700	25000	NO	YES	NO	OPEN FIXTURES	NO	NO	NO	NO
44	A-LAMP	N/A	MEDIUM SCREW BASE	1,001-1,200 Im.	5	13.5	1100	NOT LISTED	2700	25000	YES	YES	NO	?	NO	NO	NO	YES
45	A-LAMP	N/A	MEDIUM SCREW BASE	1,001-1,200 Im.	5	13.5	1100	NOT LISTED	5000	25000	YES	YES	NO	?	NO	NO	NO	YES
46	A-LAMP	N/A	MEDIUM SCREW BASE	1,401-1,600 Im.	7	15	1600	NOT LISTED	2700	25000	NO	YES	YES	OK ENCLOSED	NO	NO	NO	NO
47	A-LAMP	N/A	MEDIUM SCREW BASE	1,401-1,600 Im.	2	15.5	1600	NOT LISTED	2700	25000	YES	YES	?	?	NO	NO	NO	YES
48	A-LAMP	N/A	MEDIUM SCREW BASE	1,401-1,600 Im.	5	18	1600	NOT LISTED	2700	25000	YES	YES	NO	?	NO	NO	NO	YES
49	A-LAMP	N/A	MEDIUM SCREW BASE	1,401-1,600 Im.	2	15	1500	90	27000	25000	NO	YES	NO	NOT ENCLOSED	YES	NO	NO	YES
50	GLOBE	N/A	MEDIUM SCREW BASE	201-400 Im.	7	5	300	NOT LISTED	2700	25000	NO	YES	YES	OK ENCLOSED	NO	NO	YES	YES
51	GLOBE	N/A	MEDIUM SCREW BASE	201-400 Im.	7	5	300	NOT LISTED	2700	25000	NO	NO	YES	ENCLOSED	NO	NO	YES	YES
52	GLOBE	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	280	82	2700	15000	YES	YES	NO	DECORATIVE	NO	NO	YES	NO
53	GLOBE	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	280	82	2700	15000	NO	YES	NO	DECORATIVE	NO	NO	YES	NO
54	GLOBE	N/A	MEDIUM SCREW BASE	401-600 Im.	7	8	600	NOT LISTED	2700	25000	NO	NO	YES	OK ENCLOSED	NO	NO	NO	NO
56	GLOBE	N/A	MEDIUM SCREW BASE	401-600 Im.	2	8	500	94	3000	25000	YES	YES	NO	?	NO	NO	NO	YES
57	GLOBE	N/A	MEDIUM SCREW BASE	401-600 Im.	2	8	495	94	2700	25000	YES	YES	NO	?	YES	NO	NO	YES
58	GLOBE	N/A	MEDIUM SCREW BASE	401-600 Im.	7	8	600	NOT LISTED	2700	25000	YES	NO	YES	OK ENCLOSED	NO	NO	NO	NO
59	GLOBE	N/A	MEDIUM SCREW BASE	401-600 Im.	2	8.5	510	NOT LISTED	3000	25000	YES	YES	NO	BATH \& VANITY	NO	YES	YES	YES

Sampling Criteria						Values as Found on Product Labels									Verified Compliance			
Model \#	Bulb Style	Reflector Subtype	Base Type	Lumen Bin	Make \#	Watts	Lumens	CRI	Color Temp	Rated Life	Energy Star	Dimmable	Exterior Rated	Fixture Compatability	CA Quality Spec	$\begin{gathered} \text { Energy Star } \\ \text { QPL v2.0 } \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { Energy Star } \\ \text { QPL v1.4 } \\ \hline \end{array}$	$\begin{gathered} \text { Energy Star } \\ \text { QPL v1.1 } \end{gathered}$
60	TORPEDO/BULLET	N/A	CANDELABRA BASE	1-200 Im.	7	3	120	NOT LISTED	2700	25000	NO	NO	YES	OK ENCLOSED	NO	NO	NO	NO
61	TORPEDO/BULLET	N/A	CANDELABRA BASE	1-200 Im.	1	3.5	170	80	2700	15000	NO	YES	NO	OK ENCLOSED	NO	NO	YES	YES
62	TORPEDO/BULLET	N/A	CANDELABRA BASE	1-200 Im.	1	4	200	NOT LISTED	5000	25000	NO	YES	YES	OK ENCLOSED	NO	NO	NO	NO
63	TORPEDO/BULLET	N/A	CANDELABRA BASE	1-200 Im.	7	4	200	NOT LISTED	2700	25000	NO	YES	YES	OK ENCLOSED	NO	NO	NO	NO
64	TORPEDO/BULLET	N/A	CANDELABRA BASE	201-400 Im.	1	4	350	80	5000	15000	YES	YES	NO	CHANDELIERS \& SCONCES	NO	NO	NO	NO
66	TORPEDO/BULLET	N/A	CANDELABRA BASE	201-400 Im.	7	5	300	NOT LISTE[2700	25000	YES	YES	YES	OK ENCLOSED	NO	NO	YES	YES
67	TORPEDO/BULLET	N/A	CANDELABRA BASE	201-400 Im.	7	5	300	NOT LISTED	2700	25000	NO	YES	YES	OK ENCLOSED	NO	NO	NO	NO
68	TORPEDO/BULLET	N/A	CANDELABRA BASE	201-400 Im.	7	5	300	NOT LISTED	5000	25000	NO	NO	YES	OK ENCLOSED	NO	NO	NO	NO
70	TORPEDO/BULLET	N/A	CANDELABRA BASE	201-400 Im.	2	4.9	300	94	2700	25000	YES	YES	NO	?	YES	NO	NO	YES
71	TORPEDO/BULLET	N/A	CANDELABRA BASE	201-400 Im.	2	4.8	310	NOT LISTED	3000	25000	YES	YES	NO	NOT ENCLOSED	NO	NO	YES	YES
72	TORPEDO/BULLET	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4	350	NOT LISTED	5000	15000	YES / NO	YES	NO	CHANDELIERS \& SCONCES	NO	NO	NO	NO
73	TORPEDO/BULLET	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	350	80	5000	15000	NO	YES	NO	CHANDELIERS \& SCONCES	NO	NO	NO	NO
74	TORPEDO/BULLET	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	270	82	2700	15000	YES	YES	NO	CHANDELIERS \& SCONCES	NO	NO	YES	NO
75	TORPEDO/BULLET	N/A	MEDIUM SCREW BASE	201-400 Im.	1	4.5	300	80	2700	15000	YES	YES	NO	CHANDELIERS \& SCONCES	NO	NO	NO	NO
76	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	10	9.5	650	NOT LISTED	2700	25000	NO	YES	NO	?	NO	NO	NO	NO
77	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	2	10.5	650	NOT LISTED	2700	25000	YES	YES	NO	TRACK/RECESSED	NO	YES	YES	YES
78	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	5	9.5	650	NOT LISTED	2700	25000	YES	YES	NO	OK ENCLOSED	NO	NO	YES	YES
79	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	7	10	650	NOT LISTED	2700	25000	YES	YES	YES	ENCLOSED	NO	NO	YES	NO
80	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	2	10.5	750	NO	2700	25000	YES	YES	NO	TRACK/RECESSED	NO	NO	NO	YES
81	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	8	10	650	NOT LISTED	2700	25000	YES	YES	NO	?	YES	NO	NO	YES
82	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	2	13	750	93	2700	25000	YES	YES	NO	TRACK/RECESSED	YES	NO	YES	YES
83	SPOTLIGHT/REFLECTOR	BR30	MEDIUM SCREW BASE	601-800 Im.	2	10.5	750	80	2700	25000	YES	YES	NO	?	NO	NO	NO	YES
86	SPOTLIGHT/REFLECTOR	BR40	MEDIUM SCREW BASE	1,001-1,200 Im.	1	13	1070	NOT LISTED	5000	25000	NO	YES	NO	TRACK/RECESSED	NO	NO	NO	NO
87	SPOTLIGHT/REFLECTOR	BR40	MEDIUM SCREW BASE	1,001-1,200 Im.	2	16	1065	94	2700	25000	YES	YES	NO	TRACK/RECESSED	YES	YES	YES	YES
89	SPOTLIGHT/REFLECTOR	BR40	MEDIUM SCREW BASE	1,001-1,200 Im.	9	16	1000	90	3000	25000	Yes	Yes	NO	?	YES	YES	NO	YES
90	SPOTLIGHT/REFLECTOR	PAR20	MEDIUM SCREW BASE	401-600 Im.	1	7	500	NOT LISTED	2700	25000	YES	YES	NO	?	NO	NO	NO	NO
91	SPOTLIGHT/REFLECTOR	PAR20	MEDIUM SCREW BASE	401-600 Im.	6	8	500	NOT LISTED	3000	25000	YES	YES	NO	NOT ENCLOSED	NO	NO	YES	NO
93	SPOTLIGHT/REFLECTOR	PAR20	MEDIUM SCREW BASE	401-600 Im.	2	7.5	465	NOT LISTED	3000	25000	YES	YES	NO	TRACK	NO	NO	YES	NO
94	SPOTLIGHT/REFLECTOR	PAR20	MEDIUM SCREW BASE	401-600 Im.	12	8.5	500	NOT LISTED	3000	25000	NO	YES	NO	?	NO	NO	NO	NO
95	SPOTLIGHT/REFLECTOR	PAR30	MEDIUM SCREW BASE	601-800 Im.	2	13	790	NOT LISTED	3000	25000	YES	YES	NO	TRACK/RECESSED	NO	NO	YES	NO
96	SPOTLIGHT/REFLECTOR	PAR30	MEDIUM SCREW BASE	601-800 Im.	2	15	750	NOT LISTED	3000	25000	YES	YES	NO	TRACK/RECESSED	NO	NO	YES	YES
97	SPOTLIGHT/REFLECTOR	PAR30	MEDIUM SCREW BASE	601-800 Im.	2	13	770	92	3000	25000	YES	YES	NO	?	YES	YES	YES	YES
98	SPOTLIGHT/REFLECTOR	PAR30	MEDIUM SCREW BASE	601-800 Im.	6	14	800	NOT LISTED	3000	25000	YES	YES	YES	NOT ENCLOSED	NO	NO	YES	YES
99	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	801-1,000 Im.	12	15	850	NOT LISTED	3000	18000	NO	NO	YES	NOT ENCLOSED	NO	NO	NO	NO
100	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	801-1,000 Im.	2	16	950	NOT LISTED	3000	25000	NO	YES	YES	?	NO	NO	NO	NO
101	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	801-1,000 Im.	1	12	950	NOT LISTED	3000	25000	YES	YES	YES	?	NO	NO	NO	YES
102	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	801-1,000 Im.	2	18	950	93	3000	25000	YES	YES	YES	RECESSED/SECURITY	YES	YES	YES	NO
104	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	1,001-1,200 Im.	7	14	1050	NOT LISTED	3000	25000	NO	NO	YES	?	NO	NO	NO	NO
105	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	1,001-1,200 Im.	7	17	1050	NOT LISTED	3000	25000	NO	NO	YES	ENCLOSED	NO	NO	YES	YES
106	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	1,001-1,200 Im.	7	17	1050	NOT LISTED	5000	25000	NO	NO	YES	ENCLOSED	NO	NO	NO	NO
107	SPOTLIGHT/REFLECTOR	PAR38	MEDIUM SCREW BASE	1,001-1,200 Im.	2	17	1035	NOT LISTED	3000	25000	YES	YES	YES	?	NO	NO	YES	NO
108	SPOTLIGHT/REFLECTOR	R20	MEDIUM SCREW BASE	401-600 lm.	1	7	500	NOT LISTED	5000	25000	NO	YES	NO	?	NO	NO	NO	NO
109	SPOTLIGHT/REFLECTOR	R20	MEDIUM SCREW BASE	401-600 Im.	7	9	500	NOT LISTED	2700	25000	NO	YES	YES	OK ENCLOSED	NO	NO	NO	NO
110	SPOTLIGHT/REFLECTOR	R20	MEDIUM SCREW BASE	401-600 Im.	2	8	450	NOT LISTED	2700	25000	YES	YES	NO	TRACK/RECESSED	YES	NO	YES	NO
111	SPOTLIGHT/REFLECTOR	R20	MEDIUM SCREW BASE	401-600 Im.	2	8	450	94	2700	25000	YES	YES	NO	TRACK/RECESSED	YES	NO	NO	YES

Sampling Criteria						Values as Found on Product Labels									Verified Compliance			
Model \#	Bulb Style	Reflector Subtype	Base Type	Lumen Bin	Make \#	Watts	Lumens	CRI	Color Temp	Rated Life	Energy Star	Dimmable	Exterior Rated	Fixture Compatability	CA Quality Spec	$\begin{array}{\|c\|} \hline \text { Energy Star } \\ \text { QPL v2.0 } \\ \hline \end{array}$	Energy Star QPL v1.4	$\begin{gathered} \text { Energy Star } \\ \text { QPL v1.1 } \end{gathered}$
201	TRIM KIT	N/A	MEDIUM SCREW BASE	601-800 Im.	3	10.6	620	86	3000					4 in .	YES	NO	NO	NO
202	TRIM KIT	N/A	MEDIUM SCREW BASE	801-1,000 Im.	3	16.7	860	93	3000					6 in.	YES	NO	NO	NO
203	TRIM KIT	N/A	MEDIUM SCREW BASE	401-600 Im.	3	10.5	600	93	3000					6 in.	YES	NO	NO	NO
204	TRIM KIT	N/A	MEDIUM SCREW BASE	401-600 Im.	5	11.5	575	90	2700					4 in.	YES	NO	NO	NO
205	TRIM KIT	N/A	MEDIUM SCREW BASE	601-800 Im.	5	12.5	625	90	2700					6 in.	YES	NO	NO	NO
206	TRIM KIT	N/A	MEDIUM SCREW BASE	401-600 Im.	2	9.7	520	94	2700					4 in.	YES	NO	NO	NO
207	TRIM KIT	N/A	MEDIUM SCREW BASE	1201-1400 Im.	2	21.5	1250	91	2700					6 in.	YES	NO	NO	NO
208	TRIM KIT	N/A	MEDIUM SCREW BASE	601-800 Im.	9	12	650	90	2700					4 in .	YES	NO	NO	NO
209	TRIM KIT	N/A	MEDIUM SCREW BASE	801-1,000 Im.	9	16	900	90	2700					6 in.	YES	NO	NO	NO
210	TRIM KIT	N/A	MEDIUM SCREW BASE	601-800 Im.	10	10	610	90	2700					6 in.	YES	NO	NO	NO
211	TRIM KIT	N/A	MEDIUM SCREW BASE	401-600 Im.	10	8.5	520	90	2700					4 in .	YES	NO	NO	NO
212	TRIM KIT	N/A	MEDIUM SCREW BASE	601-800 Im.	4	11	670	90	2700					6 in.	YES	NO	NO	NO
213	TRIM KIT	N/A	MEDIUM SCREW BASE	401-600 Im.	4	9.62	570	90	2700					4 in	YES	NO	NO	NO

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{array}{\|c\|} \hline 95 \% \\ \text { Warm up } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \end{array}$	Max Temperatur	Cluster Warm up Time	$\begin{array}{\|c\|} \hline \text { Cluster Cool } \\ \text { Down Time } \\ \hline \end{array}$	$\begin{aligned} & \text { Cycle } \\ & \text { Code \# } \end{aligned}$	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	On-hours per day	On-hours per year
1	1	A-LAMP	U	39	61	67.79	56	89	20	9.9	3624.8	9.3	3383.2
2	1	A-LAMP	D	39	64	57.78	58	80	46	10.4	3808.7	10.1	3681.7
3	1	A-LAMP	U	51	73	61.26	56	89	20	9.9	3624.8	9.3	3383.2
4	1	A-LAMP	C	44	68	63.16	45	67	59	12.9	4692.9	9.6	3519.6
5	1	A-LAMP	C	41	66	68.78	45	67	59	12.9	4692.9	9.6	3519.6
6	1	A-LAMP	C	46	68	66.74	45	67	59	12.9	4692.9	9.6	3519.6
7	1	A-LAMP	R	45	70	67.78	49	81	56	11.1	4043.1	9.0	3301.8
8	1	A-LAMP	R	46	69	64.59	49	81	56	11.1	4043.1	9.0	3301.8
9	1	A-LAMP	R	46	70	66.35	49	81	56	11.1	4043.1	9.0	3301.8
10	2	A-LAMP	D	44	54	59.52	48	60	45	13.3	4866.7	10.7	3893.3
11	2	A-LAMP	U	42	67	62.69	51	67	51	12.2	4454.2	10.4	3786.1
12	2	A-LAMP	D	39	61	58.44	48	60	45	13.3	4866.7	10.7	3893.3
13	2	A-LAMP	C	42	63	68.12	45	67	59	12.9	4692.9	9.6	3519.6
14	2	A-LAMP	C	44	67	67.55	45	67	59	12.9	4692.9	9.6	3519.6
15	2	A-LAMP	C	44	72	61.04	45	67	59	12.9	4692.9	9.6	3519.6
16	2	A-LAMP	R	45	72	67.39	49	81	56	11.1	4043.1	9.0	3301.8
17	2	A-LAMP	R	44	69	62.9	49	81	56	11.1	4043.1	9.0	3301.8
18	2	A-LAMP	R	43	67	67.62	49	81	56	11.1	4043.1	9.0	3301.8
19	3	A-LAMP	U	45	70	56.33	65	87	50	9.5	3457.9	10.3	3746.1
20	3	A-LAMP	D	52	70	47.44	58	80	46	10.4	3808.7	10.1	3681.7
21	3	A-LAMP	U	45	77	52.99	65	87	50	9.5	3457.9	10.3	3746.1
22	3	A-LAMP	C	43	65	59.49	45	67	59	12.9	4692.9	9.6	3519.6
23	3	A-LAMP	C	0	0	0	45	67	59	12.9	4692.9	9.6	3519.6
24	3	A-LAMP	C	41	63	57.48	45	67	59	12.9	4692.9	9.6	3519.6
25	3	A-LAMP	R	50	71	55.18	56	89	20	9.9	3624.8	9.3	3383.2
26	3	A-LAMP	R	55	70	56.45	56	89	20	9.9	3624.8	9.3	3383.2
27	3	A-LAMP	R	50	72	57.77	56	89	20	9.9	3624.8	9.3	3383.2
28	4	A-LAMP	D	43	63	56.81	58	80	46	10.4	3808.7	10.1	3681.7
29	4	A-LAMP	U	47	79	56.3	65	87	50	9.5	3457.9	10.3	3746.1
30	4	A-LAMP	D	43	63	0	58	80	46	10.4	3808.7	10.1	3681.7
31	4	A-LAMP	C	48	69	61.43	45	67	59	12.9	4692.9	9.6	3519.6
32	4	A-LAMP	C	43	62	67.03	45	67	59	12.9	4692.9	9.6	3519.6
33	4	A-LAMP	C	43	66	62.4	45	67	59	12.9	4692.9	9.6	3519.6
34	4	A-LAMP	R	43	57	61.8	49	81	56	11.1	4043.1	9.0	3301.8
35	4	A-LAMP	R	46	66	64.6	49	81	56	11.1	4043.1	9.0	3301.8
36	4	A-LAMP	R	45	63	63.18	49	81	56	11.1	4043.1	9.0	3301.8
37	5	A-LAMP	U	41	72	58.24	65	87	50	9.5	3457.9	10.3	3746.1
38	5	A-LAMP	D	38	68	42.36	58	80	46	10.4	3808.7	10.1	3681.7
39	5	A-LAMP	U	49	74	54.05	65	87	50	9.5	3457.9	10.3	3746.1
40	5	A-LAMP	C	43	63	59.69	43	61	58	13.8	5053.8	9.9	3621.9
41	5	A-LAMP	C	41	61	62.61	43	61	58	13.8	5053.8	9.9	3621.9
42	5	A-LAMP	C	40	60	64.96	43	61	58	13.8	5053.8	9.9	3621.9
43	5	A-LAMP	R	45	67	73.27	49	81	56	11.1	4043.1	9.0	3301.8
44	5	A-LAMP	R	49	74	61.82	49	81	56	11.1	4043.1	9.0	3301.8
45	5	A-LAMP	R	50	72	61.93	49	81	56	11.1	4043.1	9.0	3301.8
46	6	A-LAMP	D	48	43	47.81	48	60	45	13.3	4866.7	10.7	3893.3
47	6	A-LAMP	U	57	81	62.11	65	87	50	9.5	3457.9	10.3	3746.1
48	6	A-LAMP	D	34	42	49.86	48	60	45	13.3	4866.7	10.7	3893.3
49	6	A-LAMP	C	45	66	67.66	54	67	60	11.9	4343.8	10.7	3909.4
50	6	A-LAMP	C	47	56	65.27	54	67	60	11.9	4343.8	10.7	3909.4
51	6	A-LAMP	C	49	59	66.87	54	67	60	11.9	4343.8	10.7	3909.4
52	6	A-LAMP	R	62	76	71.53	56	89	20	9.9	3624.8	9.3	3383.2
53	6	A-LAMP	R	49	64	71.25	56	89	20	9.9	3624.8	9.3	3383.2
54	6	A-LAMP	R	58	67	81.11	56	89	20	9.9	3624.8	9.3	3383.2
64	8	A-LAMP	D	42	77	53.13	58	80	46	10.4	3808.7	10.1	3681.7
65	8	A-LAMP	U	49	88	55.29	62	94	49	9.2	3369.2	9.5	3481.5
66	8	A-LAMP	D	36	58	55.62	58	80	46	10.4	3808.7	10.1	3681.7
67	8	A-LAMP	C	48	75	62.58	59	91	61	9.6	3504.0	9.4	3445.6
68	8	A-LAMP	C	47	76	57.57	59	91	61	9.6	3504.0	9.4	3445.6
69	8	A-LAMP	C	48	71	61.86	59	91	61	9.6	3504.0	9.4	3445.6
70	8	A-LAMP	R	56	85	61.39	56	89	20	9.9	3624.8	9.3	3383.2
71	8	A-LAMP	R	57	91	68.48	56	89	20	9.9	3624.8	9.3	3383.2
72	8	A-LAMP	R	54	91	66.43	56	89	20	9.9	3624.8	9.3	3383.2
73	9	A-LAMP	U	47	43	41.29	51	67	51	12.2	4454.2	10.4	3786.1

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{gathered} \hline 95 \% \\ \text { Warm up } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \\ \hline \end{array}$	Max Temperatur	Cluster Warm up Time	$\begin{array}{\|c\|} \hline \text { Cluster Cool } \\ \text { Down Time } \\ \hline \end{array}$	Cycle Code \#	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	$\begin{gathered} \text { Cycles per } \\ \text { year } \end{gathered}$	On-hours per day	On-hours per year
74	9	A-LAMP	D	50	116	35.14	72	102	24	8.3	3020.7	9.9	3624.8
75	9	A-LAMP	U	43	90	43.4	56	89	20	9.9	3624.8	9.3	3383.2
76	9	A-LAMP	C	34	59	47.84	38	57	57	15.2	5532.6	9.6	3504.0
77	9	A-LAMP	C	35	59	50.21	38	57	57	15.2	5532.6	9.6	3504.0
78	9	A-LAMP	C	32	50	50.21	38	57	57	15.2	5532.6	9.6	3504.0
79	9	A-LAMP	R	36	73	50.51	41	107	52	9.7	3551.4	6.6	2426.8
80	9	A-LAMP	R	37	71	49.14	41	107	52	9.7	3551.4	6.6	2426.8
81	9	A-LAMP	R	36	80	51.4	41	107	52	9.7	3551.4	6.6	2426.8
100	12	A-LAMP	D	40	61	37.55	58	80	46	10.4	3808.7	10.1	3681.7
101	12	A-LAMP	U	36	67	44.75	51	67	51	12.2	4454.2	10.4	3786.1
102	12	A-LAMP	D	39	83	36.76	58	80	46	10.4	3808.7	10.1	3681.7
103	12	A-LAMP	C	41	64	48.47	45	67	59	12.9	4692.9	9.6	3519.6
104	12	A-LAMP	C	40	61	49.62	45	67	59	12.9	4692.9	9.6	3519.6
105	12	A-LAMP	C	41	67	48.8	45	67	59	12.9	4692.9	9.6	3519.6
106	12	A-LAMP	R	49	76	53.36	49	81	56	11.1	4043.1	9.0	3301.8
107	12	A-LAMP	R	46	86	52.56	49	81	56	11.1	4043.1	9.0	3301.8
108	12	A-LAMP	R	47	78	55.97	49	81	56	11.1	4043.1	9.0	3301.8
109	13	A-LAMP	U	37	51	53.91	51	67	51	12.2	4454.2	10.4	3786.1
110	13	A-LAMP	D	51	71	39.69	58	80	46	10.4	3808.7	10.1	3681.7
111	13	A-LAMP	U	39	64	51.74	51	67	51	12.2	4454.2	10.4	3786.1
112	13	A-LAMP	C	44	63	59.43	45	67	59	12.9	4692.9	9.6	3519.6
113	13	A-LAMP	C	43	62	61.73	45	67	59	12.9	4692.9	9.6	3519.6
114	13	A-LAMP	C	45	63	58.08	45	67	59	12.9	4692.9	9.6	3519.6
115	13	A-LAMP	R	54	74	65.71	56	89	20	9.9	3624.8	9.3	3383.2
116	13	A-LAMP	R	55	75	55.43	56	89	20	9.9	3624.8	9.3	3383.2
117	13	A-LAMP	R	49	80	60.76	56	89	20	9.9	3624.8	9.3	3383.2
118	14	A-LAMP	D	44	53	42.92	48	60	45	13.3	4866.7	10.7	3893.3
119	14	A-LAMP	U	46	62	44.94	51	67	51	12.2	4454.2	10.4	3786.1
120	14	A-LAMP	D	34	50	47.22	48	60	45	13.3	4866.7	10.7	3893.3
121	14	A-LAMP	C	43	56	64.4	43	61	58	13.8	5053.8	9.9	3621.9
122	14	A-LAMP	C	43	60	60.33	43	61	58	13.8	5053.8	9.9	3621.9
123	14	A-LAMP	C	43	57	64.27	43	61	58	13.8	5053.8	9.9	3621.9
124	14	A-LAMP	R	56	79	74.3	75	94	32	8.5	3110.1	10.7	3887.6
125	14	A-LAMP	R	56	84	69.93	75	94	32	8.5	3110.1	10.7	3887.6
126	14	A-LAMP	R	60	76	65.47	75	94	32	8.5	3110.1	10.7	3887.6
127	15	A-LAMP	U	45	67	49.69	51	67	51	12.2	4454.2	10.4	3786.1
128	15	A-LAMP	D	48	85	43.52	49	81	56	11.1	4043.1	9.0	3301.8
129	15	A-LAMP	U	0	0	0	51	67	51	12.2	4454.2	10.4	3786.1
130	15	A-LAMP	C	40	62	64.79	45	67	59	12.9	4692.9	9.6	3519.6
131	15	A-LAMP	C	42	64	63.15	45	67	59	12.9	4692.9	9.6	3519.6
132	15	A-LAMP	C	43	63	63.84	45	67	59	12.9	4692.9	9.6	3519.6
133	15	A-LAMP	R	45	66	67.28	49	81	56	11.1	4043.1	9.0	3301.8
134	15	A-LAMP	R	49	77	62.92	49	81	56	11.1	4043.1	9.0	3301.8
135	15	A-LAMP	R	47	78	62.25	49	81	56	11.1	4043.1	9.0	3301.8
136	16	A-LAMP	D	46	105	39.83	73	112	47	7.8	2841.1	9.5	3456.6
137	16	A-LAMP	U	42	90	48.2	62	94	49	9.2	3369.2	9.5	3481.5
138	16	A-LAMP	D	46	105	0	73	112	47	7.8	2841.1	9.5	3456.6
139	16	A-LAMP	C	43	68	49.21	45	67	59	12.9	4692.9	9.6	3519.6
140	16	A-LAMP	C	39	66	50.12	45	67	59	12.9	4692.9	9.6	3519.6
141	16	A-LAMP	C	40	62	49.58	45	67	59	12.9	4692.9	9.6	3519.6
142	16	A-LAMP	R	49	69	51.91	56	89	20	9.9	3624.8	9.3	3383.2
143	16	A-LAMP	R	0	0	0	56	89	20	9.9	3624.8	9.3	3383.2
144	16	A-LAMP	R	55	86	52.08	56	89	20	9.9	3624.8	9.3	3383.2
145	17	A-LAMP	D	29	49	54.6	48	60	45	13.3	4866.7	10.7	3893.3
146	17	A-LAMP	U	50	79	60.31	65	87	50	9.5	3457.9	10.3	3746.1
147	17	A-LAMP	D	33	45	54.88	48	60	45	13.3	4866.7	10.7	3893.3
148	17	A-LAMP	C	35	53	61.24	43	61	58	13.8	5053.8	9.9	3621.9
149	17	A-LAMP	C	40	64	62.87	43	61	58	13.8	5053.8	9.9	3621.9
150	17	A-LAMP	C	36	57	63.8	43	61	58	13.8	5053.8	9.9	3621.9
151	17	A-LAMP	R	51	78	70.37	56	89	20	9.9	3624.8	9.3	3383.2
152	17	A-LAMP	R	53	75	69.28	56	89	20	9.9	3624.8	9.3	3383.2
153	17	A-LAMP	R	52	80	67.2	56	89	20	9.9	3624.8	9.3	3383.2
154	18	A-LAMP	D	57	68	46.89	58	80	46	10.4	3808.7	10.1	3681.7
155	18	A-LAMP	U	51	67	66.56	56	89	20	9.9	3624.8	9.3	3383.2

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{gathered} \hline 95 \% \\ \text { Warm up } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \\ \hline \end{array}$	Max Temperatur	Cluster Warm up Time	$\begin{array}{\|c\|} \hline \text { Cluster Cool } \\ \text { Down Time } \\ \hline \end{array}$	Cycle Code \#	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	$\begin{gathered} \text { Cycles per } \\ \text { year } \end{gathered}$	On-hours per day	On-hours per year
156	18	A-LAMP	D	44	69	64.09	58	80	46	10.4	3808.7	10.1	3681.7
157	18	A-LAMP	C	53	85	73.95	59	91	61	9.6	3504.0	9.4	3445.6
158	18	A-LAMP	C	55	84	73.24	59	91	61	9.6	3504.0	9.4	3445.6
159	18	A-LAMP	C	55	84	76.02	59	91	61	9.6	3504.0	9.4	3445.6
160	18	A-LAMP	R	61	99	77.09	72	102	24	8.3	3020.7	9.9	3624.8
161	18	A-LAMP	R	62	102	69.69	72	102	24	8.3	3020.7	9.9	3624.8
162	18	A-LAMP	R	68	105	70.97	72	102	24	8.3	3020.7	9.9	3624.8
163	19	A-LAMP	U	47	79	65.49	65	87	50	9.5	3457.9	10.3	3746.1
164	19	A-LAMP	D	43	68	65.07	58	80	46	10.4	3808.7	10.1	3681.7
165	19	A-LAMP	U	43	72	68.85	65	87	50	9.5	3457.9	10.3	3746.1
166	19	A-LAMP	C	43	76	80.07	59	91	61	9.6	3504.0	9.4	3445.6
167	19	A-LAMP	C	44	76	77.82	59	91	61	9.6	3504.0	9.4	3445.6
168	19	A-LAMP	C	42	73	79.97	59	91	61	9.6	3504.0	9.4	3445.6
169	19	A-LAMP	R	51	90	73.17	56	89	20	9.9	3624.8	9.3	3383.2
170	19	A-LAMP	R	51	89	81.55	56	89	20	9.9	3624.8	9.3	3383.2
171	19	A-LAMP	R	49	82	81.9	56	89	20	9.9	3624.8	9.3	3383.2
172	20	A-LAMP	D	62	71	47.64	75	94	32	8.5	3110.1	10.7	3887.6
173	20	A-LAMP	U	32	73	62.94	65	87	50	9.5	3457.9	10.3	3746.1
174	20	A-LAMP	D	62	73	43.32	75	94	32	8.5	3110.1	10.7	3887.6
175	20	A-LAMP	C	29	84	63.16	59	91	61	9.6	3504.0	9.4	3445.6
176	20	A-LAMP	C	30	88	65.37	59	91	61	9.6	3504.0	9.4	3445.6
177	20	A-LAMP	C	24	87	67.75	59	91	61	9.6	3504.0	9.4	3445.6
178	20	A-LAMP	R	24	100	67.45	41	107	52	9.7	3551.4	6.6	2426.8
179	20	A-LAMP	R	29	100	66.5	41	107	52	9.7	3551.4	6.6	2426.8
180	20	A-LAMP	R	26	100	64.94	41	107	52	9.7	3551.4	6.6	2426.8
190	22	A-LAMP	D	59	59	43.54	48	60	45	13.3	4866.7	10.7	3893.3
191	22	A-LAMP	U	37	49	53.18	51	67	51	12.2	4454.2	10.4	3786.1
192	22	A-LAMP	D	34	59	42.42	48	60	45	13.3	4866.7	10.7	3893.3
193	22	A-LAMP	C	37	58	66.89	43	61	58	13.8	5053.8	9.9	3621.9
194	22	A-LAMP	C	36	59	71.29	43	61	58	13.8	5053.8	9.9	3621.9
195	22	A-LAMP	C	38	59	71.8	43	61	58	13.8	5053.8	9.9	3621.9
196	22	A-LAMP	R	34	78	65.62	41	107	52	9.7	3551.4	6.6	2426.8
197	22	A-LAMP	R	37	77	68.07	41	107	52	9.7	3551.4	6.6	2426.8
198	22	A-LAMP	R	39	84	66.46	41	107	52	9.7	3551.4	6.6	2426.8
199	23	A-LAMP	U	46	81	55.19	65	87	50	9.5	3457.9	10.3	3746.1
200	23	A-LAMP	D	49	93	43.86	73	112	47	7.8	2841.1	9.5	3456.6
201	23	A-LAMP	U	49	65	57.25	65	87	50	9.5	3457.9	10.3	3746.1
202	23	A-LAMP	C	41	59	62.44	43	61	58	13.8	5053.8	9.9	3621.9
203	23	A-LAMP	C	36	57	66.74	43	61	58	13.8	5053.8	9.9	3621.9
204	23	A-LAMP	C	43	68	62.07	43	61	58	13.8	5053.8	9.9	3621.9
205	23	A-LAMP	R	58	76	74.14	56	89	20	9.9	3624.8	9.3	3383.2
206	23	A-LAMP	R	44	73	70.26	56	89	20	9.9	3624.8	9.3	3383.2
207	23	A-LAMP	R	46	73	67.11	56	89	20	9.9	3624.8	9.3	3383.2
208	24	A-LAMP	D	83	80	54.29	75	94	32	8.5	3110.1	10.7	3887.6
209	24	A-LAMP	U	67	104	65.63	76	114	36	7.6	2766.3	9.6	3504.0
210	24	A-LAMP	D	54	82	53.78	75	94	32	8.5	3110.1	10.7	3887.6
211	24	A-LAMP	C	68	111	73.95	78	109	62	7.7	2810.7	10.0	3653.9
212	24	A-LAMP	C	74	99	76.2	78	109	62	7.7	2810.7	10.0	3653.9
213	24	A-LAMP	C	69	98	71.2	78	109	62	7.7	2810.7	10.0	3653.9
214	24	A-LAMP	R	82	120	76.23	76	114	36	7.6	2766.3	9.6	3504.0
215	24	A-LAMP	R	73	109	77.19	76	114	36	7.6	2766.3	9.6	3504.0
216	24	A-LAMP	R	71	114	81.47	76	114	36	7.6	2766.3	9.6	3504.0
235	27	A-LAMP	U	40	63	53.85	51	67	51	12.2	4454.2	10.4	3786.1
236	27	A-LAMP	D	42	54	57.89	48	60	45	13.3	4866.7	10.7	3893.3
237	27	A-LAMP	U	40	63	54.87	51	67	51	12.2	4454.2	10.4	3786.1
238	27	A-LAMP	C	50	67	62.38	54	67	60	11.9	4343.8	10.7	3909.4
239	27	A-LAMP	C	43	60	65.79	54	67	60	11.9	4343.8	10.7	3909.4
240	27	A-LAMP	C	45	60	67.29	54	67	60	11.9	4343.8	10.7	3909.4
241	27	A-LAMP	R	61	83	70.33	75	94	32	8.5	3110.1	10.7	3887.6
242	27	A-LAMP	R	72	91	70.27	75	94	32	8.5	3110.1	10.7	3887.6
243	27	A-LAMP	R	73	78	71.56	75	94	32	8.5	3110.1	10.7	3887.6
253	29	A-LAMP	D	37	51	44.46	48	60	45	13.3	4866.7	10.7	3893.3
254	29	A-LAMP	U	45	49	54.4	51	67	51	12.2	4454.2	10.4	3786.1
255	29	A-LAMP	D	53	60	43.76	48	60	45	13.3	4866.7	10.7	3893.3

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \end{array}$	Max Temperatur	Cluster Warm up Time	$\begin{array}{\|c\|} \hline \text { Cluster Cool } \\ \text { Down Time } \\ \hline \end{array}$	Cycle Code \#	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	Cycles per year	On-hours per day	On-hours per year
256	29	A-LAMP	C	15	58	48.74	38	57	57	15.2	5532.6	9.6	3504.0
257	29	A-LAMP	C	31	58	58.18	38	57	57	15.2	5532.6	9.6	3504.0
258	29	A-LAMP	C	32	56	60.26	38	57	57	15.2	5532.6	9.6	3504.0
259	29	A-LAMP	R	34	78	62.54	41	107	52	9.7	3551.4	6.6	2426.8
260	29	A-LAMP	R	32	77	63.64	41	107	52	9.7	3551.4	6.6	2426.8
261	29	A-LAMP	R	34	82	59.21	41	107	52	9.7	3551.4	6.6	2426.8
262	30	A-LAMP	D	49	112	38.18	73	112	47	7.8	2841.1	9.5	3456.6
263	30	A-LAMP	U	45	70	54.32	65	87	50	9.5	3457.9	10.3	3746.1
264	30	A-LAMP	D	63	106	38.28	73	112	47	7.8	2841.1	9.5	3456.6
265	30	A-LAMP	C	39	63	65.4	45	67	59	12.9	4692.9	9.6	3519.6
266	30	A-LAMP	C	41	62	61.98	45	67	59	12.9	4692.9	9.6	3519.6
267	30	A-LAMP	C	42	66	63.11	45	67	59	12.9	4692.9	9.6	3519.6
268	30	A-LAMP	R	38	78	69.3	49	81	56	11.1	4043.1	9.0	3301.8
269	30	A-LAMP	R	44	75	62.01	49	81	56	11.1	4043.1	9.0	3301.8
270	30	A-LAMP	R	45	73	66.71	49	81	56	11.1	4043.1	9.0	3301.8
271	31	A-LAMP	D	45	66	65.08	58	80	46	10.4	3808.7	10.1	3681.7
272	31	A-LAMP	U	57	97	75.99	76	114	36	7.6	2766.3	9.6	3504.0
273	31	A-LAMP	D	42	70	72.58	58	80	46	10.4	3808.7	10.1	3681.7
274	31	A-LAMP	C	57	84	83.7	78	109	62	7.7	2810.7	10.0	3653.9
275	31	A-LAMP	C	65	94	62.62	78	109	62	7.7	2810.7	10.0	3653.9
276	31	A-LAMP	C	61	86	85.61	78	109	62	7.7	2810.7	10.0	3653.9
277	31	A-LAMP	R	67	103	92.41	72	102	24	8.3	3020.7	9.9	3624.8
278	31	A-LAMP	R	56	99	103.54	72	102	24	8.3	3020.7	9.9	3624.8
279	31	A-LAMP	R	63	99	91.68	72	102	24	8.3	3020.7	9.9	3624.8
289	33	A-LAMP	U	53	81	73.68	56	89	20	9.9	3624.8	9.3	3383.2
290	33	A-LAMP	D	41	55	69	48	60	45	13.3	4866.7	10.7	3893.3
291	33	A-LAMP	U	51	89	71.37	56	89	20	9.9	3624.8	9.3	3383.2
292	33	A-LAMP	C	50	85	76.93	59	91	61	9.6	3504.0	9.4	3445.6
293	33	A-LAMP	C	51	92	66.38	59	91	61	9.6	3504.0	9.4	3445.6
294	33	A-LAMP	C	49	81	78.09	59	91	61	9.6	3504.0	9.4	3445.6
295	33	A-LAMP	R	65	96	82.92	72	102	24	8.3	3020.7	9.9	3624.8
296	33	A-LAMP	R	66	101	83.87	72	102	24	8.3	3020.7	9.9	3624.8
297	33	A-LAMP	R	60	88	97.95	72	102	24	8.3	3020.7	9.9	3624.8
316	36	A-LAMP	D	63	93	52.9	73	112	47	7.8	2841.1	9.5	3456.6
317	36	A-LAMP	U	66	110	60.14	76	114	36	7.6	2766.3	9.6	3504.0
318	36	A-LAMP	D	67	103	52.37	73	112	47	7.8	2841.1	9.5	3456.6
319	36	A-LAMP	C	76	111	71.78	78	109	62	7.7	2810.7	10.0	3653.9
320	36	A-LAMP	C	64	109	73.81	78	109	62	7.7	2810.7	10.0	3653.9
321	36	A-LAMP	C	64	108	72.54	78	109	62	7.7	2810.7	10.0	3653.9
322	36	A-LAMP	R	64	122	68.99	89	129	40	6.6	2411.0	9.8	3576.3
323	36	A-LAMP	R	70	130	70.48	89	129	40	6.6	2411.0	9.8	3576.3
324	36	A-LAMP	R	57	119	73.8	89	129	40	6.6	2411.0	9.8	3576.3
325	37	A-LAMP	U	62	83	61.08	65	87	50	9.5	3457.9	10.3	3746.1
326	37	A-LAMP	D	55	89	43.47	73	112	47	7.8	2841.1	9.5	3456.6
327	37	A-LAMP	U	67	88	55.7	65	87	50	9.5	3457.9	10.3	3746.1
328	37	A-LAMP	C	76	105	72.3	78	109	62	7.7	2810.7	10.0	3653.9
329	37	A-LAMP	C	82	96	71.71	78	109	62	7.7	2810.7	10.0	3653.9
330	37	A-LAMP	C	77	114	69.08	78	109	62	7.7	2810.7	10.0	3653.9
331	37	A-LAMP	R	133	125	80.93	144	202	48	4.2	1519.1	10.0	3645.8
332	37	A-LAMP	R	126	131	73.01	144	202	48	4.2	1519.1	10.0	3645.8
333	37	A-LAMP	R	113	138	76.82	144	202	48	4.2	1519.1	10.0	3645.8
334	38	A-LAMP	D	41	55	50.35	48	60	45	13.3	4866.7	10.7	3893.3
335	38	A-LAMP	U	49	70	57.23	65	87	50	9.5	3457.9	10.3	3746.1
336	38	A-LAMP	D	43	47	47.4	48	60	45	13.3	4866.7	10.7	3893.3
337	38	A-LAMP	C	57	66	66.76	54	67	60	11.9	4343.8	10.7	3909.4
338	38	A-LAMP	C	52	65	70.36	54	67	60	11.9	4343.8	10.7	3909.4
339	38	A-LAMP	C	52	67	69.13	54	67	60	11.9	4343.8	10.7	3909.4
340	38	A-LAMP	R	61	81	67.95	75	94	32	8.5	3110.1	10.7	3887.6
341	38	A-LAMP	R	63	85	65.07	75	94	32	8.5	3110.1	10.7	3887.6
342	38	A-LAMP	R	59	78	69.94	75	94	32	8.5	3110.1	10.7	3887.6
343	39	A-LAMP	U	53	80	58.32	65	87	50	9.5	3457.9	10.3	3746.1
344	39	A-LAMP	D	45	51	39.47	48	60	45	13.3	4866.7	10.7	3893.3
345	39	A-LAMP	U	37	73	62	65	87	50	9.5	3457.9	10.3	3746.1
346	39	A-LAMP	C	31	58	64.71	38	57	57	15.2	5532.6	9.6	3504.0

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \\ \hline \end{array}$	Max Temperatur	Cluster Warm up Time	Cluster Cool Down Time	Cycle Code \#	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Cycles per } \\ \text { day } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	On-hours per day	On-hours per year
347	39	A-LAMP	C	32	49	62.15	38	57	57	15.2	5532.6	9.6	3504.0
348	39	A-LAMP	C	37	45	62.62	38	57	57	15.2	5532.6	9.6	3504.0
349	39	A-LAMP	R	34	62	69.6	41	107	52	9.7	3551.4	6.6	2426.8
350	39	A-LAMP	R	34	60	68.26	41	107	52	9.7	3551.4	6.6	2426.8
351	39	A-LAMP	R	37	72	64.92	41	107	52	9.7	3551.4	6.6	2426.8
352	40	A-LAMP	D	47	67	37.69	58	80	46	10.4	3808.7	10.1	3681.7
353	40	A-LAMP	U	45	60	51.43	51	67	51	12.2	4454.2	10.4	3786.1
354	40	A-LAMP	D	54	69	46.39	58	80	46	10.4	3808.7	10.1	3681.7
355	40	A-LAMP	C	58	77	66.65	59	91	61	9.6	3504.0	9.4	3445.6
356	40	A-LAMP	C	66	76	65.22	59	91	61	9.6	3504.0	9.4	3445.6
357	40	A-LAMP	C	53	77	65.79	59	91	61	9.6	3504.0	9.4	3445.6
358	40	A-LAMP	R	60	95	66.73	75	94	32	8.5	3110.1	10.7	3887.6
359	40	A-LAMP	R	65	95	68.17	75	94	32	8.5	3110.1	10.7	3887.6
360	40	A-LAMP	R	67	90	63.41	75	94	32	8.5	3110.1	10.7	3887.6
361	41	A-LAMP	U	58	84	54.93	62	94	49	9.2	3369.2	9.5	3481.5
362	41	A-LAMP	D	56	87	50.1	73	112	47	7.8	2841.1	9.5	3456.6
363	41	A-LAMP	U	61	90	61.4	62	94	49	9.2	3369.2	9.5	3481.5
364	41	A-LAMP	C	71	104	63.69	78	109	62	7.7	2810.7	10.0	3653.9
365	41	A-LAMP	C	81	113	57.62	78	109	62	7.7	2810.7	10.0	3653.9
366	41	A-LAMP	C	74	108	66.64	78	109	62	7.7	2810.7	10.0	3653.9
367	41	A-LAMP	R	81	130	68.55	89	129	40	6.6	2411.0	9.8	3576.3
368	41	A-LAMP	R	73	123	74.27	89	129	40	6.6	2411.0	9.8	3576.3
369	41	A-LAMP	R	0	0	0	89	129	40	6.6	2411.0	9.8	3576.3
379	43	A-LAMP	U	48	83	84.2	62	94	49	9.2	3369.2	9.5	3481.5
380	43	A-LAMP	D	51	88.5	.	73	112	47	7.8	2841.1	9.5	3456.6
381	43	A-LAMP	U	54	94	72	62	94	49	9.2	3369.2	9.5	3481.5
382	43	A-LAMP	C	63	101	83.27	78	109	62	7.7	2810.7	10.0	3653.9
383	43	A-LAMP	C	57	99	85.01	78	109	62	7.7	2810.7	10.0	3653.9
384	43	A-LAMP	C	57	99	83.76	78	109	62	7.7	2810.7	10.0	3653.9
385	43	A-LAMP	R	68	113	88.6	76	114	36	7.6	2766.3	9.6	3504.0
386	43	A-LAMP	R	68	112	86.36	76	114	36	7.6	2766.3	9.6	3504.0
387	43	A-LAMP	R	65	113	85.98	76	114	36	7.6	2766.3	9.6	3504.0
388	44	A-LAMP	D	59	73	43.19	58	80	46	10.4	3808.7	10.1	3681.7
389	44	A-LAMP	U	35	72	62.68	65	87	50	9.5	3457.9	10.3	3746.1
390	44	A-LAMP	D	51	77	45.9	58	80	46	10.4	3808.7	10.1	3681.7
391	44	A-LAMP	C	28	87	64.46	59	91	61	9.6	3504.0	9.4	3445.6
392	44	A-LAMP	C	28	87	65.26	59	91	61	9.6	3504.0	9.4	3445.6
393	44	A-LAMP	C	31	85	65.33	59	91	61	9.6	3504.0	9.4	3445.6
394	44	A-LAMP	R	28	100	64.59	41	107	52	9.7	3551.4	6.6	2426.8
395	44	A-LAMP	R	26	83	66.43	41	107	52	9.7	3551.4	6.6	2426.8
396	44	A-LAMP	R	26	106	67.09	41	107	52	9.7	3551.4	6.6	2426.8
397	45	A-LAMP	U	56	77	59.81	65	87	50	9.5	3457.9	10.3	3746.1
398	45	A-LAMP	D	55	75.5	.	58	80	46	10.4	3808.7	10.1	3681.7
399	45	A-LAMP	U	54	74	60.94	65	87	50	9.5	3457.9	10.3	3746.1
400	45	A-LAMP	C	29	99	65.14	59	91	61	9.6	3504.0	9.4	3445.6
401	45	A-LAMP	C	37	87	67.37	59	91	61	9.6	3504.0	9.4	3445.6
402	45	A-LAMP	C	34	86	66.81	59	91	61	9.6	3504.0	9.4	3445.6
403	45	A-LAMP	R	33	107	69.87	41	107	52	9.7	3551.4	6.6	2426.8
404	45	A-LAMP	R	33	107	68.2	41	107	52	9.7	3551.4	6.6	2426.8
405	45	A-LAMP	R	29	108	68.85	41	107	52	9.7	3551.4	6.6	2426.8
406	46	A-LAMP	D	55	87	47.42	75	94	32	8.5	3110.1	10.7	3887.6
407	46	A-LAMP	U	47	121	70.67	76	114	36	7.6	2766.3	9.6	3504.0
408	46	A-LAMP	D	62	77	50.69	75	94	32	8.5	3110.1	10.7	3887.6
409	46	A-LAMP	C	56	114	69.11	78	109	62	7.7	2810.7	10.0	3653.9
410	46	A-LAMP	C	50	106	67.08	78	109	62	7.7	2810.7	10.0	3653.9
411	46	A-LAMP	C	41	105	76.07	78	109	62	7.7	2810.7	10.0	3653.9
412	46	A-LAMP	R	54	128	71.97	89	129	40	6.6	2411.0	9.8	3576.3
413	46	A-LAMP	R	48	120	90.09	89	129	40	6.6	2411.0	9.8	3576.3
414	46	A-LAMP	R	48	119	73.43	89	129	40	6.6	2411.0	9.8	3576.3
415	47	A-LAMP	U	49	78	55.27	65	87	50	9.5	3457.9	10.3	3746.1
416	47	A-LAMP	D	42	76	45.22	58	80	46	10.4	3808.7	10.1	3681.7
417	47	A-LAMP	U	50	76	52.54	65	87	50	9.5	3457.9	10.3	3746.1
418	47	A-LAMP	C	64	93	66.74	78	109	62	7.7	2810.7	10.0	3653.9
419	47	A-LAMP	C	63	90	70.12	78	109	62	7.7	2810.7	10.0	3653.9

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \end{array}$	Max Temperatur	Cluster Warm up Time	$\begin{array}{\|c\|} \hline \text { Cluster Cool } \\ \text { Down Time } \\ \hline \end{array}$	Cycle Code \#	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { day } \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	$\begin{gathered} \hline \text { On-hours } \\ \text { per day } \end{gathered}$	On-hours per year
420	47	A-LAMP	C	59	87	71.53	78	109	62	7.7	2810.7	10.0	3653.9
421	47	A-LAMP	R	76	110	76.46	76	114	36	7.6	2766.3	9.6	3504.0
422	47	A-LAMP	R	68	95	72.51	76	114	36	7.6	2766.3	9.6	3504.0
423	47	A-LAMP	R	73	109	69.59	76	114	36	7.6	2766.3	9.6	3504.0
424	48	A-LAMP	D	51	80	43.76	58	80	46	10.4	3808.7	10.1	3681.7
425	48	A-LAMP	U	51	75	65.36	65	87	50	9.5	3457.9	10.3	3746.1
426	48	A-LAMP	D	57	74	45.27	58	80	46	10.4	3808.7	10.1	3681.7
427	48	A-LAMP	C	40	91	73.6	59	91	61	9.6	3504.0	9.4	3445.6
428	48	A-LAMP	C	40	89	72.58	59	91	61	9.6	3504.0	9.4	3445.6
429	48	A-LAMP	C	43	91	72	59	91	61	9.6	3504.0	9.4	3445.6
430	48	A-LAMP	R	42	104	80.46	41	107	52	9.7	3551.4	6.6	2426.8
431	48	A-LAMP	R	40	104	77.62	41	107	52	9.7	3551.4	6.6	2426.8
432	48	A-LAMP	R	42	102	79.02	41	107	52	9.7	3551.4	6.6	2426.8
433	49	A-LAMP	U	59	94	67.4	62	94	49	9.2	3369.2	9.5	3481.5
434	49	A-LAMP	D	56	89	65.06	73	112	47	7.8	2841.1	9.5	3456.6
435	49	A-LAMP	U	59	92	66.83	62	94	49	9.2	3369.2	9.5	3481.5
436	49	A-LAMP	C	67	109	79.97	78	109	62	7.7	2810.7	10.0	3653.9
437	49	A-LAMP	C	67	108	81.11	78	109	62	7.7	2810.7	10.0	3653.9
438	49	A-LAMP	C	66	109	76.14	78	109	62	7.7	2810.7	10.0	3653.9
439	49	A-LAMP	R	79	127	87.22	89	129	40	6.6	2411.0	9.8	3576.3
440	49	A-LAMP	R	93	134	82.49	89	129	40	6.6	2411.0	9.8	3576.3
441	49	A-LAMP	R	81	125	83.37	89	129	40	6.6	2411.0	9.8	3576.3
442	50	GLOBE	D	41	60	39.22	48	60	45	13.3	4866.7	10.7	3893.3
443	50	GLOBE	U	39	65	43.69	51	67	51	12.2	4454.2	10.4	3786.1
444	50	GLOBE	D	30	49	35.66	48	60	45	13.3	4866.7	10.7	3893.3
445	51	GLOBE	U	51	93	42.26	62	94	49	9.2	3369.2	9.5	3481.5
446	51	GLOBE	D	42	102	38.49	73	112	47	7.8	2841.1	9.5	3456.6
447	51	GLOBE	U	50	87	34.42	62	94	49	9.2	3369.2	9.5	3481.5
448	52	GLOBE	D	48	61	53.2	48	60	45	13.3	4866.7	10.7	3893.3
449	52	GLOBE	U	32	68	38.78	65	87	50	9.5	3457.9	10.3	3746.1
450	52	GLOBE	D	47	54	46.78	48	60	45	13.3	4866.7	10.7	3893.3
451	53	GLOBE	U	46	62	44.93	56	89	20	9.9	3624.8	9.3	3383.2
452	53	GLOBE	D	53	65	44.59	58	80	46	10.4	3808.7	10.1	3681.7
453	53	GLOBE	U	47	69	46.2	56	89	20	9.9	3624.8	9.3	3383.2
454	54	GLOBE	D	41	49	49.38	48	60	45	13.3	4866.7	10.7	3893.3
455	54	GLOBE	U	44	64	50.51	51	67	51	12.2	4454.2	10.4	3786.1
456	54	GLOBE	D	34	53	48.81	48	60	45	13.3	4866.7	10.7	3893.3
460	56	GLOBE	D	44	85	51.33	73	112	47	7.8	2841.1	9.5	3456.6
461	56	GLOBE	U	51	92	54.6	62	94	49	9.2	3369.2	9.5	3481.5
462	56	GLOBE	D	47	88	49.55	73	112	47	7.8	2841.1	9.5	3456.6
463	57	GLOBE	U	44	57	52.2	51	67	51	12.2	4454.2	10.4	3786.1
464	57	GLOBE	D	45	66	48.55	58	80	46	10.4	3808.7	10.1	3681.7
465	57	GLOBE	U	39	63	44.97	51	67	51	12.2	4454.2	10.4	3786.1
466	58	GLOBE	D	26	53	44.71	48	60	45	13.3	4866.7	10.7	3893.3
467	58	GLOBE	U	46	67	52.51	56	89	20	9.9	3624.8	9.3	3383.2
468	58	GLOBE	D	48	59	48.85	48	60	45	13.3	4866.7	10.7	3893.3
469	59	GLOBE	U	50	77	52.55	65	87	50	9.5	3457.9	10.3	3746.1
470	59	GLOBE	D	42	65	46.13	58	80	46	10.4	3808.7	10.1	3681.7
471	59	GLOBE	D	39	65	54	58	80	46	10.4	3808.7	10.1	3681.7
472	60	TORPEDO/BULLET	D	27	41	37.85	48	60	45	13.3	4866.7	10.7	3893.3
473	60	TORPEDO/BULLET	U	31	46	45.03	51	67	51	12.2	4454.2	10.4	3786.1
474	60	TORPEDO/BULLET	D	25	44	40.33	48	60	45	13.3	4866.7	10.7	3893.3
475	60	TORPEDO/BULLET	C	46	51	47.82	38	57	57	15.2	5532.6	9.6	3504.0
476	60	TORPEDO/BULLET	C	35	45	46.54	38	57	57	15.2	5532.6	9.6	3504.0
477	60	TORPEDO/BULLET	C	34	48	47.37	38	57	57	15.2	5532.6	9.6	3504.0
478	61	TORPEDO/BULLET	U	36	56	62.57	51	67	51	12.2	4454.2	10.4	3786.1
479	61	TORPEDO/BULLET	D	38	48	53.45	48	60	45	13.3	4866.7	10.7	3893.3
480	61	TORPEDO/BULLET	U	36	53	61.45	51	67	51	12.2	4454.2	10.4	3786.1
481	61	TORPEDO/BULLET	C	45	62	63.79	54	67	60	11.9	4343.8	10.7	3909.4
482	61	TORPEDO/BULLET	C	46	64	58.8	54	67	60	11.9	4343.8	10.7	3909.4
483	61	TORPEDO/BULLET	C	52	63	65.92	54	67	60	11.9	4343.8	10.7	3909.4
484	62	TORPEDO/BULLET	D	27	43	47.22	48	60	45	13.3	4866.7	10.7	3893.3
485	62	TORPEDO/BULLET	U	35	46	48.42	51	67	51	12.2	4454.2	10.4	3786.1
486	62	TORPEDO/BULLET	D	33	35	53.44	48	60	45	13.3	4866.7	10.7	3893.3

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \\ \hline \end{array}$	Max Temperatur	Cluster Warm up Time	$\begin{array}{\|c\|} \hline \text { Cluster Cool } \\ \text { Down Time } \\ \hline \end{array}$	Cycle Code \#	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { day } \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	$\begin{gathered} \hline \text { On-hours } \\ \text { per day } \end{gathered}$	On-hours per year
487	62	TORPEDO/BULLET	C	39	55	49.2	38	57	57	15.2	5532.6	9.6	3504.0
488	62	TORPEDO/BULLET	C	39	52	49.8	38	57	57	15.2	5532.6	9.6	3504.0
489	62	TORPEDO/BULLET	C	37	51	52.96	38	57	57	15.2	5532.6	9.6	3504.0
490	63	TORPEDO/BULLET	U	30	44	57.54	51	67	51	12.2	4454.2	10.4	3786.1
491	63	TORPEDO/BULLET	D	35	53	56.85	48	60	45	13.3	4866.7	10.7	3893.3
492	63	TORPEDO/BULLET	U	34	46	55.13	51	67	51	12.2	4454.2	10.4	3786.1
493	63	TORPEDO/BULLET	C	38	57	56.06	43	61	58	13.8	5053.8	9.9	3621.9
494	63	TORPEDO/BULLET	C	41	56	51.77	43	61	58	13.8	5053.8	9.9	3621.9
495	63	TORPEDO/BULLET	C	36	53	58.41	43	61	58	13.8	5053.8	9.9	3621.9
496	64	TORPEDO/BULLET	D	35	50	54.98	48	60	45	13.3	4866.7	10.7	3893.3
497	64	TORPEDO/BULLET	U	37	54	58.47	51	67	51	12.2	4454.2	10.4	3786.1
498	64	TORPEDO/BULLET	D	35	48	50.79	48	60	45	13.3	4866.7	10.7	3893.3
499	64	TORPEDO/BULLET	C	44	58	59.98	43	61	58	13.8	5053.8	9.9	3621.9
500	64	TORPEDO/BULLET	C	40	57	55.94	43	61	58	13.8	5053.8	9.9	3621.9
501	64	TORPEDO/BULLET	C	45	62	57.71	43	61	58	13.8	5053.8	9.9	3621.9
508	66	TORPEDO/BULLET	U	39	54	63.34	51	67	51	12.2	4454.2	10.4	3786.1
509	66	TORPEDO/BULLET	D	37	51	65.85	48	60	45	13.3	4866.7	10.7	3893.3
510	66	TORPEDO/BULLET	D	38	50	62.48	48	60	45	13.3	4866.7	10.7	3893.3
511	66	TORPEDO/BULLET	C	44	62	64.98	54	67	60	11.9	4343.8	10.7	3909.4
512	66	TORPEDO/BULLET	C	44	60	65.64	54	67	60	11.9	4343.8	10.7	3909.4
513	66	TORPEDO/BULLET	C	47	62	72.1	54	67	60	11.9	4343.8	10.7	3909.4
514	67	TORPEDO/BULLET	D	43	58	66.9	48	60	45	13.3	4866.7	10.7	3893.3
515	67	TORPEDO/BULLET	D	44	60	71.63	48	60	45	13.3	4866.7	10.7	3893.3
516	67	TORPEDO/BULLET	U	36	55	69.53	51	67	51	12.2	4454.2	10.4	3786.1
517	67	TORPEDO/BULLET	C	48	67	67.45	54	67	60	11.9	4343.8	10.7	3909.4
518	67	TORPEDO/BULLET	C	0	0	0	54	67	60	11.9	4343.8	10.7	3909.4
519	67	TORPEDO/BULLET	C	0	0	0	54	67	60	11.9	4343.8	10.7	3909.4
520	68	TORPEDO/BULLET	U	34	50	59.76	51	67	51	12.2	4454.2	10.4	3786.1
521	68	TORPEDO/BULLET	U	38	55	62.6	51	67	51	12.2	4454.2	10.4	3786.1
522	68	TORPEDO/BULLET	D	34	48	60.44	48	60	45	13.3	4866.7	10.7	3893.3
523	68	TORPEDO/BULLET	C	46	63	67.94	54	67	60	11.9	4343.8	10.7	3909.4
524	68	TORPEDO/BULLET	C	48	64	65.48	54	67	60	11.9	4343.8	10.7	3909.4
525	68	TORPEDO/BULLET	C	46	61	66.31	54	67	60	11.9	4343.8	10.7	3909.4
532	70	TORPEDO/BULLET	U	27	42	62.43	51	67	51	12.2	4454.2	10.4	3786.1
533	70	TORPEDO/BULLET	U	29	46	58.74	51	67	51	12.2	4454.2	10.4	3786.1
534	70	TORPEDO/BULLET	D	30	44	56.85	48	60	45	13.3	4866.7	10.7	3893.3
535	70	TORPEDO/BULLET	C	36	52	63.1	38	57	57	15.2	5532.6	9.6	3504.0
536	70	TORPEDO/BULLET	C	41	54	68.14	38	57	57	15.2	5532.6	9.6	3504.0
537	70	TORPEDO/BULLET	C	33	49	65.89	38	57	57	15.2	5532.6	9.6	3504.0
538	71	TORPEDO/BULLET	D	44	58	39.06	48	60	45	13.3	4866.7	10.7	3893.3
539	71	TORPEDO/BULLET	U	46	70	64.78	65	87	50	9.5	3457.9	10.3	3746.1
540	71	TORPEDO/BULLET	D	41	52	43.49	48	60	45	13.3	4866.7	10.7	3893.3
541	71	TORPEDO/BULLET	C	53	63	54.32	54	67	60	11.9	4343.8	10.7	3909.4
542	71	TORPEDO/BULLET	C	46	60	59.48	54	67	60	11.9	4343.8	10.7	3909.4
543	71	TORPEDO/BULLET	C	50	58	57.9	54	67	60	11.9	4343.8	10.7	3909.4
544	72	TORPEDO/BULLET	D	47	60	53.23	49	81	56	11.1	4043.1	9.0	3301.8
545	72	TORPEDO/BULLET	U	44	70	51.81	65	87	50	9.5	3457.9	10.3	3746.1
546	72	TORPEDO/BULLET	D	41	55	52.19	49	81	56	11.1	4043.1	9.0	3301.8
547	73	TORPEDO/BULLET	U	41	54	57.59	51	67	51	12.2	4454.2	10.4	3786.1
548	73	TORPEDO/BULLET	D	38	54	52.5	48	60	45	13.3	4866.7	10.7	3893.3
549	73	TORPEDO/BULLET	U	41	52	57.85	51	67	51	12.2	4454.2	10.4	3786.1
550	74	TORPEDO/BULLET	D	33	48	60.26	48	60	45	13.3	4866.7	10.7	3893.3
551	74	TORPEDO/BULLET	U	37	58	62.18	51	67	51	12.2	4454.2	10.4	3786.1
552	74	TORPEDO/BULLET	D	42	55	54.61	48	60	45	13.3	4866.7	10.7	3893.3
553	75	TORPEDO/BULLET	U	39	55	63.05	51	67	51	12.2	4454.2	10.4	3786.1
554	75	TORPEDO/BULLET	D	37	50	60.34	48	60	45	13.3	4866.7	10.7	3893.3
555	75	TORPEDO/BULLET	U	39	53	63.24	51	67	51	12.2	4454.2	10.4	3786.1
556	76	SPOTLIGHT/REFLECTOR	D	74	58	33.61	75	94	32	8.5	3110.1	10.7	3887.6
557	76	SPOTLIGHT/REFLECTOR	U	41	64	46.34	51	67	51	12.2	4454.2	10.4	3786.1
558	76	SPOTLIGHT/REFLECTOR	D	35	73	30.99	75	94	32	8.5	3110.1	10.7	3887.6
559	76	SPOTLIGHT/REFLECTOR	R	50	74	49.28	49	81	56	11.1	4043.1	9.0	3301.8
560	76	SPOTLIGHT/REFLECTOR	R	51	79	54.1	49	81	56	11.1	4043.1	9.0	3301.8
561	76	SPOTLIGHT/REFLECTOR	R	45	85	51.07	49	81	56	11.1	4043.1	9.0	3301.8
562	77	SPOTLIGHT/REFLECTOR	U	92	156	37.69	105	140	44	5.9	2145.3	10.3	3754.3

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \\ \hline \end{array}$	Max Temperatur	Cluster Warm up Time	Cluster Cool Down Time	$\begin{aligned} & \text { Cycle } \\ & \text { Code \# } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { day } \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	On-hours per day	On-hours per year
563	77	SPOTLIGHT/REFLECTOR	D	64	125	28.64	89	129	40	6.6	2411.0	9.8	3576.3
564	77	SPOTLIGHT/REFLECTOR	U	61	90	41.2	105	140	44	5.9	2145.3	10.3	3754.3
565	77	SPOTLIGHT/REFLECTOR	R	84	115	50.69	89	117	28	7.0	2551.5	10.4	3784.7
566	77	SPOTLIGHT/REFLECTOR	R	78	120	48	89	117	28	7.0	2551.5	10.4	3784.7
567	77	SPOTLIGHT/REFLECTOR	R	82	116	46.38	89	117	28	7.0	2551.5	10.4	3784.7
568	78	SPOTLIGHT/REFLECTOR	D	35	66	36.13	48	60	45	13.3	4866.7	10.7	3893.3
569	78	SPOTLIGHT/REFLECTOR	U	36	46	54.52	51	67	51	12.2	4454.2	10.4	3786.1
570	78	SPOTLIGHT/REFLECTOR	D	37	54	38.75	48	60	45	13.3	4866.7	10.7	3893.3
571	78	SPOTLIGHT/REFLECTOR	R	50	87	63.37	56	89	20	9.9	3624.8	9.3	3383.2
572	78	SPOTLIGHT/REFLECTOR	R	47	81	70.17	49	81	56	11.1	4043.1	9.0	3301.8
573	78	SPOTLIGHT/REFLECTOR	R	47	74	66.29	49	81	56	11.1	4043.1	9.0	3301.8
574	79	SPOTLIGHT/REFLECTOR	U	53	89	38.44	56	89	20	9.9	3624.8	9.3	3383.2
575	79	SPOTLIGHT/REFLECTOR	D	70	83	35.22	75	94	32	8.5	3110.1	10.7	3887.6
576	79	SPOTLIGHT/REFLECTOR	U	47	82	40.7	56	89	20	9.9	3624.8	9.3	3383.2
577	79	SPOTLIGHT/REFLECTOR	R	71	93	50.81	72	102	24	8.3	3020.7	9.9	3624.8
578	79	SPOTLIGHT/REFLECTOR	R	71	102	49.09	72	102	24	8.3	3020.7	9.9	3624.8
579	79	SPOTLIGHT/REFLECTOR	R	66	104	51.21	72	102	24	8.3	3020.7	9.9	3624.8
580	80	SPOTLIGHT/REFLECTOR	U	72	108	47.4	76	114	36	7.6	2766.3	9.6	3504.0
581	80	SPOTLIGHT/REFLECTOR	D	73	108.5	.	73	112	47	7.8	2841.1	9.5	3456.6
582	80	SPOTLIGHT/REFLECTOR	U	74	109	47.47	76	114	36	7.6	2766.3	9.6	3504.0
583	80	SPOTLIGHT/REFLECTOR	R	90	128	58.5	105	140	44	5.9	2145.3	10.3	3754.3
584	80	SPOTLIGHT/REFLECTOR	R	98	138	60	105	140	44	5.9	2145.3	10.3	3754.3
585	80	SPOTLIGHT/REFLECTOR	R	79	118	51.63	105	140	44	5.9	2145.3	10.3	3754.3
586	81	SPOTLIGHT/REFLECTOR	D	58	78	0	58	80	46	10.4	3808.7	10.1	3681.7
587	81	SPOTLIGHT/REFLECTOR	U	59	112	47.18	76	114	36	7.6	2766.3	9.6	3504.0
588	81	SPOTLIGHT/REFLECTOR	D	58	78	39.41	58	80	46	10.4	3808.7	10.1	3681.7
589	81	SPOTLIGHT/REFLECTOR	R	85	123	60.54	89	117	28	7.0	2551.5	10.4	3784.7
590	81	SPOTLIGHT/REFLECTOR	R	73	102	56.84	89	117	28	7.0	2551.5	10.4	3784.7
591	81	SPOTLIGHT/REFLECTOR	R	92	122	59.73	89	117	28	7.0	2551.5	10.4	3784.7
592	82	SPOTLIGHT/REFLECTOR	U	78	110	50.13	76	114	36	7.6	2766.3	9.6	3504.0
593	82	SPOTLIGHT/REFLECTOR	D	72.5	110	.	73	112	47	7.8	2841.1	9.5	3456.6
594	82	SPOTLIGHT/REFLECTOR	U	67	110	50.93	76	114	36	7.6	2766.3	9.6	3504.0
595	82	SPOTLIGHT/REFLECTOR	R	98	113	64.8	89	117	28	7.0	2551.5	10.4	3784.7
596	82	SPOTLIGHT/REFLECTOR	R	88	118	66.56	89	117	28	7.0	2551.5	10.4	3784.7
597	82	SPOTLIGHT/REFLECTOR	R	82	115	59.41	89	117	28	7.0	2551.5	10.4	3784.7
598	83	SPOTLIGHT/REFLECTOR	D	53	95	33.31	73	112	47	7.8	2841.1	9.5	3456.6
599	83	SPOTLIGHT/REFLECTOR	U	61	82	43.98	65	87	50	9.5	3457.9	10.3	3746.1
600	83	SPOTLIGHT/REFLECTOR	D	62	90	33.57	73	112	47	7.8	2841.1	9.5	3456.6
601	83	SPOTLIGHT/REFLECTOR	R	85	124	57.15	89	129	40	6.6	2411.0	9.8	3576.3
602	83	SPOTLIGHT/REFLECTOR	R	101	148	57.08	89	129	40	6.6	2411.0	9.8	3576.3
603	83	SPOTLIGHT/REFLECTOR	R	80	113	56.92	89	129	40	6.6	2411.0	9.8	3576.3
616	86	SPOTLIGHT/REFLECTOR	D	81	97	34.46	89	129	40	6.6	2411.0	9.8	3576.3
617	86	SPOTLIGHT/REFLECTOR	U	75	127	42.41	105	140	44	5.9	2145.3	10.3	3754.3
618	86	SPOTLIGHT/REFLECTOR	D	76	92	32.5	89	129	40	6.6	2411.0	9.8	3576.3
619	86	SPOTLIGHT/REFLECTOR	R	97	131	65.66	89	129	40	6.6	2411.0	9.8	3576.3
620	86	SPOTLIGHT/REFLECTOR	R	101	126	62.67	105	140	44	5.9	2145.3	10.3	3754.3
621	86	SPOTLIGHT/REFLECTOR	R	89	128	60.28	105	140	44	5.9	2145.3	10.3	3754.3
622	87	SPOTLIGHT/REFLECTOR	U	0	0	0	89	117	28	7.0	2551.5	10.4	3784.7
623	87	SPOTLIGHT/REFLECTOR	D	95	107	35.39	89	129	40	6.6	2411.0	9.8	3576.3
624	87	SPOTLIGHT/REFLECTOR	U	91	101	38.24	89	117	28	7.0	2551.5	10.4	3784.7
625	87	SPOTLIGHT/REFLECTOR	R	146	203	68.7	144	202	48	4.2	1519.1	10.0	3645.8
626	87	SPOTLIGHT/REFLECTOR	R	142	202	65.93	144	202	48	4.2	1519.1	10.0	3645.8
627	87	SPOTLIGHT/REFLECTOR	R	143	202	66.85	144	202	48	4.2	1519.1	10.0	3645.8
634	89	SPOTLIGHT/REFLECTOR	D	84	98	37.77	89	129	40	6.6	2411.0	9.8	3576.3
635	89	SPOTLIGHT/REFLECTOR	U	91	139	49.91	105	140	44	5.9	2145.3	10.3	3754.3
636	89	SPOTLIGHT/REFLECTOR	D	78	95	38.41	89	129	40	6.6	2411.0	9.8	3576.3
637	89	SPOTLIGHT/REFLECTOR	R	121	171	69.95	89	117	28	7.0	2551.5	10.4	3784.7
638	89	SPOTLIGHT/REFLECTOR	R	75	113	65.29	89	117	28	7.0	2551.5	10.4	3784.7
639	89	SPOTLIGHT/REFLECTOR	R	76	103	69.34	89	117	28	7.0	2551.5	10.4	3784.7
640	90	SPOTLIGHT/REFLECTOR	D	57	85	37.14	73	112	47	7.8	2841.1	9.5	3456.6
641	90	SPOTLIGHT/REFLECTOR	U	58	84	46.33	65	87	50	9.5	3457.9	10.3	3746.1
642	90	SPOTLIGHT/REFLECTOR	D	72	93	36.55	73	112	47	7.8	2841.1	9.5	3456.6
643	90	SPOTLIGHT/REFLECTOR	R	77	114	56.11	76	114	36	7.6	2766.3	9.6	3504.0
644	90	SPOTLIGHT/REFLECTOR	R	74	113	54.38	76	114	36	7.6	2766.3	9.6	3504.0

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \end{array}$	Max Temperatur	Cluster Warm up Time	Cluster Cool Down Time	Cycle Code \#	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	On-hours per day	On-hours per year
645	90	SPOTLIGHT/REFLECTOR	R	73	113	53.18	76	114	36	7.6	2766.3	9.6	3504.0
646	91	SPOTLIGHT/REFLECTOR	U	52	72	48.2	65	87	50	9.5	3457.9	10.3	3746.1
647	91	SPOTLIGHT/REFLECTOR	D	43	56	50.96	48	60	45	13.3	4866.7	10.7	3893.3
648	91	SPOTLIGHT/REFLECTOR	U	52	73	46.45	65	87	50	9.5	3457.9	10.3	3746.1
649	91	SPOTLIGHT/REFLECTOR	R	63	96	59.91	75	94	32	8.5	3110.1	10.7	3887.6
650	91	SPOTLIGHT/REFLECTOR	R	59	90	56.95	75	94	32	8.5	3110.1	10.7	3887.6
651	91	SPOTLIGHT/REFLECTOR	R	61	96	53.61	75	94	32	8.5	3110.1	10.7	3887.6
658	93	SPOTLIGHT/REFLECTOR	U	43	60	52.61	56	89	20	9.9	3624.8	9.3	3383.2
659	93	SPOTLIGHT/REFLECTOR	D	56	112	37.12	73	112	47	7.8	2841.1	9.5	3456.6
660	93	SPOTLIGHT/REFLECTOR	U	54	99	48.97	56	89	20	9.9	3624.8	9.3	3383.2
661	93	SPOTLIGHT/REFLECTOR	R	69	97	51.28	75	94	32	8.5	3110.1	10.7	3887.6
662	93	SPOTLIGHT/REFLECTOR	R	66	93	53.86	75	94	32	8.5	3110.1	10.7	3887.6
663	93	SPOTLIGHT/REFLECTOR	R	67	93	52.12	75	94	32	8.5	3110.1	10.7	3887.6
664	94	SPOTLIGHT/REFLECTOR	D	38	75	43.84	58	80	46	10.4	3808.7	10.1	3681.7
665	94	SPOTLIGHT/REFLECTOR	U	65	98	55.99	76	114	36	7.6	2766.3	9.6	3504.0
666	94	SPOTLIGHT/REFLECTOR	D	50	55	56.7	58	80	46	10.4	3808.7	10.1	3681.7
667	94	SPOTLIGHT/REFLECTOR	R	68	101	64.81	75	94	32	8.5	3110.1	10.7	3887.6
668	94	SPOTLIGHT/REFLECTOR	R	80	110	67.52	75	94	32	8.5	3110.1	10.7	3887.6
669	94	SPOTLIGHT/REFLECTOR	R	79	117	68.15	75	94	32	8.5	3110.1	10.7	3887.6
670	95	SPOTLIGHT/REFLECTOR	U	58	86	43.78	56	89	20	9.9	3624.8	9.3	3383.2
671	95	SPOTLIGHT/REFLECTOR	D	60	89	36.15	73	112	47	7.8	2841.1	9.5	3456.6
672	95	SPOTLIGHT/REFLECTOR	U	59	87	46.47	56	89	20	9.9	3624.8	9.3	3383.2
673	95	SPOTLIGHT/REFLECTOR	R	82	117	54.82	89	117	28	7.0	2551.5	10.4	3784.7
674	95	SPOTLIGHT/REFLECTOR	R	88	118	56.65	89	117	28	7.0	2551.5	10.4	3784.7
675	95	SPOTLIGHT/REFLECTOR	R	76	117	55.89	89	117	28	7.0	2551.5	10.4	3784.7
676	96	SPOTLIGHT/REFLECTOR	D	62	89	0	73	112	47	7.8	2841.1	9.5	3456.6
677	96	SPOTLIGHT/REFLECTOR	U	62	87	47.05	62	94	49	9.2	3369.2	9.5	3481.5
678	96	SPOTLIGHT/REFLECTOR	D	62	89	35.63	73	112	47	7.8	2841.1	9.5	3456.6
679	96	SPOTLIGHT/REFLECTOR	R	90	120	59.46	89	117	28	7.0	2551.5	10.4	3784.7
680	96	SPOTLIGHT/REFLECTOR	R	84	103	55.83	89	117	28	7.0	2551.5	10.4	3784.7
681	96	SPOTLIGHT/REFLECTOR	R	75	89	55.08	89	117	28	7.0	2551.5	10.4	3784.7
682	97	SPOTLIGHT/REFLECTOR	U	80	124	49.9	89	117	28	7.0	2551.5	10.4	3784.7
683	97	SPOTLIGHT/REFLECTOR	D	79	122.5		89	129	40	6.6	2411.0	9.8	3576.3
684	97	SPOTLIGHT/REFLECTOR	U	78	121	49.78	89	117	28	7.0	2551.5	10.4	3784.7
685	97	SPOTLIGHT/REFLECTOR	R	103	150	63.36	105	140	44	5.9	2145.3	10.3	3754.3
686	97	SPOTLIGHT/REFLECTOR	R	103	141	66.19	105	140	44	5.9	2145.3	10.3	3754.3
687	97	SPOTLIGHT/REFLECTOR	R	94	134	62.66	105	140	44	5.9	2145.3	10.3	3754.3
688	98	SPOTLIGHT/REFLECTOR	D	42	72	37.42	58	80	46	10.4	3808.7	10.1	3681.7
689	98	SPOTLIGHT/REFLECTOR	U	51	79	45.93	65	87	50	9.5	3457.9	10.3	3746.1
690	98	SPOTLIGHT/REFLECTOR	D	38	77	35.51	58	80	46	10.4	3808.7	10.1	3681.7
691	98	SPOTLIGHT/REFLECTOR	R	79	119	71.36	72	102	24	8.3	3020.7	9.9	3624.8
692	98	SPOTLIGHT/REFLECTOR	R	71	74	61.81	72	102	24	8.3	3020.7	9.9	3624.8
693	98	SPOTLIGHT/REFLECTOR	R	67	111	64.15	72	102	24	8.3	3020.7	9.9	3624.8
694	99	SPOTLIGHT/REFLECTOR	U	67	94	43.38	76	114	36	7.6	2766.3	9.6	3504.0
695	99	SPOTLIGHT/REFLECTOR	D	62	102	37.59	73	112	47	7.8	2841.1	9.5	3456.6
696	99	SPOTLIGHT/REFLECTOR	U	73	84	43.39	76	114	36	7.6	2766.3	9.6	3504.0
697	99	SPOTLIGHT/REFLECTOR	R	101	143	64.46	105	140	44	5.9	2145.3	10.3	3754.3
698	99	SPOTLIGHT/REFLECTOR	R	98	141	61.45	105	140	44	5.9	2145.3	10.3	3754.3
699	99	SPOTLIGHT/REFLECTOR	R	96	139	66.15	105	140	44	5.9	2145.3	10.3	3754.3
700	100	SPOTLIGHT/REFLECTOR	D	79	106	42.68	72	102	24	8.3	3020.7	9.9	3624.8
701	100	SPOTLIGHT/REFLECTOR	U	68	107	48.54	76	114	36	7.6	2766.3	9.6	3504.0
702	100	SPOTLIGHT/REFLECTOR	D	70	95	42.14	72	102	24	8.3	3020.7	9.9	3624.8
703	100	SPOTLIGHT/REFLECTOR	R	104	147	69.24	144	202	48	4.2	1519.1	10.0	3645.8
704	100	SPOTLIGHT/REFLECTOR	R	106	145	63.33	144	202	48	4.2	1519.1	10.0	3645.8
705	100	SPOTLIGHT/REFLECTOR	R	109	148	64.61	144	202	48	4.2	1519.1	10.0	3645.8
706	101	SPOTLIGHT/REFLECTOR	U	57	103	41.24	76	114	36	7.6	2766.3	9.6	3504.0
707	101	SPOTLIGHT/REFLECTOR	D	68	101	33.88	73	112	47	7.8	2841.1	9.5	3456.6
708	101	SPOTLIGHT/REFLECTOR	U	52	97	43.13	76	114	36	7.6	2766.3	9.6	3504.0
709	101	SPOTLIGHT/REFLECTOR	R	78	113	54.6	89	117	28	7.0	2551.5	10.4	3784.7
710	101	SPOTLIGHT/REFLECTOR	R	79	114	55.79	89	117	28	7.0	2551.5	10.4	3784.7
711	101	SPOTLIGHT/REFLECTOR	R	78	97	51.53	89	117	28	7.0	2551.5	10.4	3784.7
712	102	SPOTLIGHT/REFLECTOR	D	66	132	39.98	89	129	40	6.6	2411.0	9.8	3576.3
713	102	SPOTLIGHT/REFLECTOR	U	76	116	52.26	76	114	36	7.8	2841.1	9.5	3456.6
714	102	SPOTLIGHT/REFLECTOR	D	67	144	36.74	89	129	40	6.6	2411.0	9.8	3576.3

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	95% Warm up	$\begin{array}{\|c\|} \hline 95 \% \text { Cool } \\ \text { down time } \end{array}$	Max Temperatur	Cluster Warm up Time	Cluster Cool Down Time	Cycle Code \#	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cycles per } \\ \text { year } \end{array}$	On-hours per day	On-hours per year
715	102	SPOTLIGHT/REFLECTOR	R	118	159	68.21	144	202	48	4.2	1519.1	10.0	3645.8
716	102	SPOTLIGHT/REFLECTOR	R	120	166	69.63	144	202	48	4.2	1519.1	10.0	3645.8
717	102	SPOTLIGHT/REFLECTOR	R	136	156	67.14	144	202	48	4.2	1519.1	10.0	3645.8
724	104	SPOTLIGHT/REFLECTOR	D	67	131	33.45	89	129	40	6.6	2411.0	9.8	3576.3
725	104	SPOTLIGHT/REFLECTOR	U	67	110	41.47	76	114	36	7.6	2766.3	9.6	3504.0
726	104	SPOTLIGHT/REFLECTOR	D	61	127	37.13	89	129	40	6.6	2411.0	9.8	3576.3
727	104	SPOTLIGHT/REFLECTOR	R	88	130	53.91	89	117	28	7.0	2551.5	10.4	3784.7
728	104	SPOTLIGHT/REFLECTOR	R	98	118	53.87	89	117	28	7.0	2551.5	10.4	3784.7
729	104	SPOTLIGHT/REFLECTOR	R	92	127	57.63	89	117	28	7.0	2551.5	10.4	3784.7
730	105	SPOTLIGHT/REFLECTOR	U	80	121	44.69	89	117	28	7.0	2551.5	10.4	3784.7
731	105	SPOTLIGHT/REFLECTOR	D	90	101	37.14	89	129	40	6.6	2411.0	9.8	3576.3
732	105	SPOTLIGHT/REFLECTOR	U	67	101	47.22	89	117	28	7.0	2551.5	10.4	3784.7
733	105	SPOTLIGHT/REFLECTOR	R	96	127	57.78	105	140	44	5.9	2145.3	10.3	3754.3
734	105	SPOTLIGHT/REFLECTOR	R	103	134	60.2	105	140	44	5.9	2145.3	10.3	3754.3
735	105	SPOTLIGHT/REFLECTOR	R	88	127	63.62	105	140	44	5.9	2145.3	10.3	3754.3
736	106	SPOTLIGHT/REFLECTOR	D	74	118	37.91	89	129	40	6.6	2411.0	9.8	3576.3
737	106	SPOTLIGHT/REFLECTOR	U	81.5	115.5	.	89	117	28	7.0	2551.5	10.4	3784.7
738	106	SPOTLIGHT/REFLECTOR	D	89	113	33.58	89	129	40	6.6	2411.0	9.8	3576.3
739	106	SPOTLIGHT/REFLECTOR	R	104	144	60.98	144	202	48	4.2	1519.1	10.0	3645.8
740	106	SPOTLIGHT/REFLECTOR	R	104	142	58.05	144	202	48	4.2	1519.1	10.0	3645.8
741	106	SPOTLIGHT/REFLECTOR	R	110	147	60.48	144	202	48	4.2	1519.1	10.0	3645.8
742	107	SPOTLIGHT/REFLECTOR	U	56	87	44.38	62	94	49	9.2	3369.2	9.5	3481.5
743	107	SPOTLIGHT/REFLECTOR	D	60	80	38.25	75	94	32	8.5	3110.1	10.7	3887.6
744	107	SPOTLIGHT/REFLECTOR	U	58	90	43.53	62	94	49	9.2	3369.2	9.5	3481.5
745	107	SPOTLIGHT/REFLECTOR	R	0	0	0	105	140	44	5.9	2145.3	10.3	3754.3
746	107	SPOTLIGHT/REFLECTOR	R	97	139	66.38	105	140	44	5.9	2145.3	10.3	3754.3
747	107	SPOTLIGHT/REFLECTOR	R	91	110	63.41	105	140	44	5.9	2145.3	10.3	3754.3
748	108	SPOTLIGHT/REFLECTOR	D	46	85	52.26	49	81	56	11.1	4043.1	9.0	3301.8
749	108	SPOTLIGHT/REFLECTOR	U	54	93	50.77	62	94	49	9.2	3369.2	9.5	3481.5
750	108	SPOTLIGHT/REFLECTOR	D	48	70	49.82	49	81	56	11.1	4043.1	9.0	3301.8
751	108	SPOTLIGHT/REFLECTOR	R	59	86	58.02	75	94	32	8.5	3110.1	10.7	3887.6
752	108	SPOTLIGHT/REFLECTOR	R	60	88	61.23	75	94	32	8.5	3110.1	10.7	3887.6
753	108	SPOTLIGHT/REFLECTOR	R	60	92	61.36	75	94	32	8.5	3110.1	10.7	3887.6
754	109	SPOTLIGHT/REFLECTOR	U	48	66	49.71	51	67	51	12.2	4454.2	10.4	3786.1
755	109	SPOTLIGHT/REFLECTOR	D	50	75	44.6	58	80	46	10.4	3808.7	10.1	3681.7
756	109	SPOTLIGHT/REFLECTOR	U	47	62	53.19	51	67	51	12.2	4454.2	10.4	3786.1
757	109	SPOTLIGHT/REFLECTOR	R	61	99	59.13	72	102	24	8.3	3020.7	9.9	3624.8
758	109	SPOTLIGHT/REFLECTOR	R	64	98	66.44	72	102	24	8.3	3020.7	9.9	3624.8
759	109	SPOTLIGHT/REFLECTOR	R	65	104	57.91	72	102	24	8.3	3020.7	9.9	3624.8
760	110	SPOTLIGHT/REFLECTOR	D	55	101	38.77	73	112	47	7.8	2841.1	9.5	3456.6
761	110	SPOTLIGHT/REFLECTOR	U	60	85	53.08	65	87	50	9.5	3457.9	10.3	3746.1
762	110	SPOTLIGHT/REFLECTOR	D	56	93	43.64	73	112	47	7.8	2841.1	9.5	3456.6
763	110	SPOTLIGHT/REFLECTOR	R	73	107	51.77	72	102	24	8.3	3020.7	9.9	3624.8
764	110	SPOTLIGHT/REFLECTOR	R	69	99	54.67	72	102	24	8.3	3020.7	9.9	3624.8
765	110	SPOTLIGHT/REFLECTOR	R	69	101	58.95	72	102	24	8.3	3020.7	9.9	3624.8
766	111	SPOTLIGHT/REFLECTOR	D	55	91	43.92	75	94	32	8.5	3110.1	10.7	3887.6
767	111	SPOTLIGHT/REFLECTOR	U	74	102	52.89	76	114	36	7.6	2766.3	9.6	3504.0
768	111	SPOTLIGHT/REFLECTOR	D	56	72	39.04	75	94	32	8.5	3110.1	10.7	3887.6
769	111	SPOTLIGHT/REFLECTOR	R	77	106	60.59	76	114	36	7.6	2766.3	9.6	3504.0
770	111	SPOTLIGHT/REFLECTOR	R	68	108	61.38	76	114	36	7.6	2766.3	9.6	3504.0
771	111	SPOTLIGHT/REFLECTOR	R	81	113	61.52	76	114	36	7.6	2766.3	9.6	3504.0
1001	201	TRIM KIT	R	102	148	48.21	144	202	48	4.2	1519.1	10.0	3645.8
1002	201	TRIM KIT	R	118	194	50.06	144	202	48	4.2	1519.1	10.0	3645.8
1003	201	TRIM KIT	R	0	0	0	144	202	48	4.2	1519.1	10.0	3645.8
1004	202	TRIM KIT	R	76	98	48.79	76	114	36	7.6	2766.3	9.6	3504.0
1005	202	TRIM KIT	R	74	93	49.23	76	114	36	7.6	2766.3	9.6	3504.0
1006	202	TRIM KIT	R	76	88	49.5	76	114	36	7.6	2766.3	9.6	3504.0
1007	203	TRIM KIT	R	79	110	40.87	89	129	40	6.6	2411.0	9.8	3576.3
1008	203	TRIM KIT	R	80	103	39.66	89	129	40	6.6	2411.0	9.8	3576.3
1009	203	TRIM KIT	R	72	115	41.12	89	129	40	6.6	2411.0	9.8	3576.3
1010	204	TRIM KIT	R	0	0	0	105	140	44	5.9	2145.3	10.3	3754.3
1011	204	TRIM KIT	R	131	122	47.8	105	140	44	5.9	2145.3	10.3	3754.3
1012	204	TRIM KIT	R	0	0	0	105	140	44	5.9	2145.3	10.3	3754.3
1013	205	TRIM KIT	R	58	106	39.79	76	114	36	7.6	2766.3	9.6	3504.0

Test Units				Thermal Testing Results			Switching Zone Assignment \& Timing						
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{array}{\|c\|} \hline 95 \% \\ \text { Warm up } \\ \hline \end{array}$	95\% Cool down time	Max Temperatur	Cluster Warm up Time	Cluster Cool Down Time	Cycle Code \#	$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$	Cycles per year	On-hours per day	On-hours per year
1014	205	TRIM KIT	R	24	122	37.07	76	114	36	7.6	2766.3	9.6	3504.0
1015	205	TRIM KIT	R	67	94	42.93	76	114	36	7.6	2766.3	9.6	3504.0
1016	206	TRIM KIT	R	106	161	51.45	105	140	44	5.9	2145.3	10.3	3754.3
1017	206	TRIM KIT	R	102	171	50.75	105	140	44	5.9	2145.3	10.3	3754.3
1018	206	TRIM KIT	R	110	102	50.18	105	140	44	5.9	2145.3	10.3	3754.3
1019	207	TRIM KIT	R	65	101	59.92	76	114	36	7.6	2766.3	9.6	3504.0
1020	207	TRIM KIT	R	56	94	59.39	76	114	36	7.6	2766.3	9.6	3504.0
1021	207	TRIM KIT	R	64	86	59.87	76	114	36	7.6	2766.3	9.6	3504.0
1022	208	TRIM KIT	R	108	124	58.75	105	140	44	5.9	2145.3	10.3	3754.3
1023	208	TRIM KIT	R	0	0	0	105	140	44	5.9	2145.3	10.3	3754.3
1024	208	TRIM KIT	R	77	200	56.7	105	140	44	5.9	2145.3	10.3	3754.3
1025	209	TRIM KIT	R	68	94	49.48	76	114	36	7.6	2766.3	9.6	3504.0
1026	209	TRIM KIT	R	71	102	51.87	76	114	36	7.6	2766.3	9.6	3504.0
1027	209	TRIM KIT	R	77	104	50.58	89	129	40	6.6	2411.0	9.8	3576.3
1028	210	TRIM KIT	R	38	102	41.17	89	129	40	6.6	2411.0	9.8	3576.3
1029	210	TRIM KIT	R	73	114	45.1	89	129	40	6.6	2411.0	9.8	3576.3
1030	210	TRIM KIT	R	68	95	43.2	89	129	40	6.6	2411.0	9.8	3576.3
1031	211	TRIM KIT	R	92	140	45.31	144	202	48	4.2	1519.1	10.0	3645.8
1032	211	TRIM KIT	R	158	206	46.36	144	202	48	4.2	1519.1	10.0	3645.8
1033	211	TRIM KIT	R	100	128	47.31	144	202	48	4.2	1519.1	10.0	3645.8
1034	212	TRIM KIT	R	78	120	44	89	129	40	6.6	2411.0	9.8	3576.3
1035	212	TRIM KIT	R	75	120	42.67	89	129	40	6.6	2411.0	9.8	3576.3
1036	212	TRIM KIT	R	84	122	45.15	89	129	40	6.6	2411.0	9.8	3576.3
1037	213	TRIM KIT	R	140	210	52	144	202	48	4.2	1519.1	10.0	3645.8
1038	213	TRIM KIT	R	129	149	53.2	144	202	48	4.2	1519.1	10.0	3645.8
1039	213	TRIM KIT	R	147	192	50.4	144	202	48	4.2	1519.1	10.0	3645.8

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
Lamp \#	Model \#	Lamp Type	Test Fixture	Initial Volts	Initial Amps	Initial Power	Initial pf	$\begin{aligned} & \text { Initial } \\ & \text { THD } \end{aligned}$	$\begin{gathered} \text { Initial } \\ \text { Lumens } \end{gathered}$	Initial CCT	Initial CRI	Final Volts	Final Amps	Final Power	Final pf	Final THD	Final Lumens	Final CCT	Final CRI
1	1	A-LAMP	U	120	0.0428	4.206	0.8189	46.33	303.9	2754	82	120	0.043	4.1633	0.8161	46.589	295.11	2781	83
2	1	A-LAMP	D	120	0.0441	4.3316	0.8185	47.641	321.1	2835	81	120	0.044	4.3419	0.8212	47.225	334.78	2821	80
3	1	A-LAMP	U	120	0.0448	4.423	0.8227	48.082	326.1	2826	81	120	0.045	4.4762	0.8287	47.428	345.35	2843	81
4	1	A-LAMP	C	120	0.0445	4.374	0.8191	48.44	303.4	2736	81	120	0.044	4.3692	0.8216	48.296	293.01	2765	81
5	1	A-LAMP	C	120	0.045	4.44	0.8204	48.454	310.8	2761	81	120	0.045	4.3986	0.8184	48.301	303.12	2807	82
6	1	A-LAMP	C	120	0.0435	4.277	0.8193	48.387	299.6	2760	82	120	0.043	4.2733	0.8209	47.987	297.79	2809	82
7	1	A-LAMP	R	120	0.0437	4.307	0.8213	47.284	308.9	2729	81	120	0.043	4.2602	0.819	47.223	306.48	2775	81
8	1	A-LAMP	R	120	0.0429	4.226	0.8209	46.854	299.2	2772	82	120	0.043	4.2117	0.8205	46.756	297.1	2790	82
9	1	A-LAMP	R	120	0.0432	4.269	0.8235	46.989	312.7	2793	82	120	0.043	4.2346	0.8238	46.909	314.75	2841	82
10	2	A-LAMP	D	120	0.0448	4.366	0.8121	49.428	298.8	2730	82	120	0.044	4.3272	0.8121	49.304	299.45	2710	81
11	2	A-LAMP	U	120	0.044	4.291	0.8127	49.085	286.1	2731	82	120	0.044	4.2534	0.8129	48.795	279.16	2764	82
12	2	A-LAMP	D	120	0.0442	4.303	0.8113	48.954	300.8	2695	81	120	0.041	4.6076	0.9408	27.062	205.75	2717	82
13	2	A-LAMP	C	120	0.0438	4.272	0.8128	49.184	285.9	2704	82	120	0.046	4.5591	0.8346	44.984	240.16	2755	82
14	2	A-LAMP	C	120	0.044	4.295	0.8134	49.141	281.5	2740	82	120	0.044	4.279	0.8154	48.72	292.05	2767	82
15	2	A-LAMP	C	120	0.0434	4.263	0.8185	48.211	301.9	2741	82	120	0.043	4.2406	0.8194	47.941	295.95	2771	82
16	2	A-LAMP	R	120	0.0443	4.323	0.8132	49.212	288.4	2708	81	120	0.044	4.3047	0.8173	48.531	294.85	2793	82
17	2	A-LAMP	R	120	0.0438	4.25	0.8086	48.2	296	2745	82	120	0.043	4.2227	0.811	48.133	306.07	2784	83
18	2	A-LAMP	R	120	0.0437	4.28	0.8162	48.188	293.1	2728	82	120	0.043	4.2372	0.8183	47.571	289.76	2806	83
19	3	A-LAMP	U	120	0.036	4.178	0.9671	9.994	319.4	2996	82	120	0.036	4.1882	0.9678	9.9584	318.24	2979	82
20	3	A-LAMP	D	120	0.0367	4.286	0.9732	10.637	327.1	3062	83	120	0.037	4.2963	0.972	10.449	331.62	3021	82
21	3	A-LAMP	U	120	0.0366	4.251	0.9679	10.5	329.6	2993	83	120	0.037	4.2506	0.9695	10.479	339.14	3004	82
22	3	A-LAMP	C	120	0.0362	4.224	0.9724	10.347	317.2	2983	83	120	0.036	4.2497	0.972	10.089	322.1	3031	83
23	3	A-LAMP	C	120	0.0365	4.256	0.9717	10.578	320.9	2975	82	120	0.037	4.2629	0.97	10.358	321.72	3021	83
24	3	A-LAMP	C	120	0.0368	4.287	0.9708	10.546	327.6	2997	82	120	0.037	4.2999	0.9703	10.423	335.84	3032	82
25	3	A-LAMP	R	120	0.0364	4.236	0.9698	9.997	324.8	2986	82	120	0.037	4.2506	0.9701	9.7372	329.49	3022	83
26	3	A-LAMP	R	120	0.0363	4.241	0.9736	10.388	320.3	3007	82	120	0.036	4.2325	0.9704	10.131	329.66	3034	83
27	3	A-LAMP	R	120	0.0366	4.258	0.9695	10.408	321.6	3007	82	120	0.053	4.4845	0.7086	87.431	323.53	3040	83
28	4	A-LAMP	D	120	0.0448	4.397	0.8179	47.974	394.9	4880	82	120	0.044	4.3481	0.8168	48.111	364.56	4946	83
29	4	A-LAMP	U	120	0.0441	4.387	0.829	47.315	373.2	4856	82	120	0.044	4.3291	0.8272	47.003	370.21	5210	84
30	4	A-LAMP	D	120	0.0446	4.4	0.8221	47.495	379.6	4917	82	120	0.044	4.3483	0.8186	47.951	365.24	4938	81
31	4	A-LAMP	C	120	0.0435	4.279	0.8197	46.603	338.5	4852	83	120	0.043	4.2651	0.8211	46.49	330.46	4911	83
32	4	A-LAMP	C	120	0.0434	4.298	0.8253	45.23	363.3	4844	81	120	0.043	4.272	0.8233	45.157	353	4919	81
33	4	A-LAMP	C	120	0.0442	4.337	0.8177	46.77	376.2	4947	83	120	0.044	4.3477	0.8232	45.96	379.64	5016	83
34	4	A-LAMP	R	120	0.0446	4.407	0.8234	46.943	388.7	4903	82	120	0.044	4.384	0.825	46.618	372.27	5023	82
35	4	A-LAMP	R	120	0.0453	4.489	0.8258	48.926	386.5	4955	83	120	0.045	4.438	0.8241	48.943	392.15	5091	84
36	4	A-LAMP	R	120	0.0448	4.447	0.8272	47.479	386.5	4850	83	120	0.045	4.4276	0.8285	47.156	377.73	5014	84
37	5	A-LAMP	U	120	0.0669	7.085	0.8825	46.809	539.1	3031	80	120	0.067	7.0735	0.8852	47.19	555.08	3089	81
38	5	A-LAMP	D	120	0.0663	7.045	0.8855	47.782	532.2	3035	81	120	0.066	7.0033	0.8819	48.074	550.26	3045	80
39	5	A-LAMP	U	120	0.0663	7.038	0.8846	46.699	544.4	3060	81	120	0.066	7.0327	0.8854	47.138	566.97	3186	82
40	5	A-LAMP	C	120	0.066	7.015	0.8857	46.907	533.1	3052	81	120	0.066	6.9928	0.885	47.4	534.32	3111	81
41	5	A-LAMP	C	120	0.0659	7.014	0.8869	47.245	533.8	3027	81	120	0.066	6.9818	0.8847	47.576	539.1	3065	81
42	5	A-LAMP	C	120	0.0654	6.924	0.8823	47.782	539.3	3024	80	120							
43	5	A-LAMP	R	120	0.0661	7.086	0.8933	46.285	521.1	3022	80	120	0.066	7.0455	0.8884	46.837	539.28	3067	81
44	5	A-LAMP	R	120	0.0661	7.031	0.8864	47.202	529.1	3019	80	120	0.066	6.9779	0.8823	47.793	534.06	3028	80
45	5	A-LAMP	R	120	0.0658	7.001	0.8867	46.908	524.9	3039	80	120	0.066	6.9874	0.8855	47.223	532.21	3077	80
46	6	A-LAMP	D	120	0.0693	7.45	0.8959	47.713	444.3	2973	83	120	0.069	7.4044	0.8902	48.287	457.4	3010	82
47	6	A-LAMP	U	120	0.0689	7.386	0.8933	48.456	429.4	2951	83	120	0.069	7.3089	0.8866	49.521	448.91	3169	85
48	6	A-LAMP	D	120	0.0687	7.331	0.8893	47.967	447.9	2978	83	120	0.069	7.3593	0.8903	48.315	444.95	3044	83
49	6	A-LAMP	C	120	0.0678	7.22	0.8874	49.201	407.9	2968	83	120							
50	6	A-LAMP	C	120	0.0683	7.329	0.8942	47.185	433.1	2958	83	120	0.068	7.3211	0.8925	47.587	421.51	3041	83
51	6	A-LAMP	C	120	0.0697	7.441	0.8896	48.128	451.8	2977	83	120							
52	6	A-LAMP	R	120	0.0684	7.306	0.8901	48.055	425.1	2964	83	120	0.069	7.3794	0.8916	48.069	417.54	3056	83
53	6	A-LAMP	R	120	0.0671	7.155	0.8886	47.422	420.1	2961	83	120	0.067	7.1396	0.8905	47.989	417.05	3036	83
54	6	A-LAMP	R	120	0.0697	7.49	0.8955	47.827	445.5	2978	83	120	0.07	7.4545	0.8899	48.339	429.03	3095	83
64	8	A-LAMP	D	120	0.0706	7.201	0.85	56.533	573.9	5239	81	120	0.07	7.1709	0.8511	56.522	590.28	5261	81
65	8	A-LAMP	U	120	0.071	7.251	0.8511	56.841	573.8	5289	82	120	0.071	7.2075	0.8518	56.741	584.26	5511	83
66	8	A-LAMP	D	120	0.0714	7.266	0.848	57.049	593.9	5198	81	120	0.07	7.2003	0.8513	57.143	570.05	5247	81
67	8	A-LAMP	C	120	0.0717	7.287	0.8468	57.955	597.3	5213	81	120	0.071	7.2557	0.8476	57.797	591.07	5272	81
68	8	A-LAMP	C	120	0.0703	7.147	0.8472	57.928	593.5	5054	81	120	0.07	7.0897	0.8462	57.865	589.01	5114	81
69	8	A-LAMP	C	120	0.0703	7.192	0.8525	55.972	581.3	5179	81	120	0.07	7.1417	0.8541	55.87	580.82	5225	81
70	8	A-LAMP	R	120	0.0712	7.276	0.8516	56.778	583.2	5264	82	120	0.071	7.2307	0.8524	56.568	576.05	5284	81
71	8	A-LAMP	R	120	0.0714	7.278	0.8494	57.158	592.8	5136	82	120	0.072	7.3792	0.8521	56.547	601.81	5209	83
72	8	A-LAMP	R	120	0.0712	7.228	0.846	58.48	585.2	5257	83	120	0.071	7.165	0.8459	58.426	592.34	5317	83
73	9	A-LAMP	U	120	0.0691	7.161	0.8636	53.654	535.3	2732	80	120	0.067	6.9627	0.8619	53.769	527.12	2792	81
74	9	A-LAMP	D	120	0.0675	6.989	0.8628	53.887	533.4	2756	81	120	0.065	6.6628	0.8595	54.442	496.55	2828	81
75	9	A-LAMP	U	120	0.0683	7.058	0.8612	54.341	535.9	2742	80	120	0.068	7.0651	0.8615	54.223	526.55	2823	81
76	9	A-LAMP	C	120	0.0685	7.122	0.8664	52.315	543.1	2750	81	120	0.068	7.0137	0.8658	52.511	518.27	2838	81
77	9	A-LAMP	C	120	0.0687	7.11	0.8624	53.458	519.6	2764	81	120	0.067	6.9915	0.864	53.606	517.74	2802	81
78	9	A-LAMP	C	120	0.0685	7.134	0.8679	52.505	540.8	2752	81	120	0.069	7.1576	0.8689	52.272	528.26	2842	81
79	9	A-LAMP	R	120	0.0683	7.1	0.8663	52.701	537.1	2753	81	120	0.068	7.1058	0.867	52.62	523.28	2822	81
80	9	A-LAMP	R	120	0.068	7.022	0.8605	54.124	499.7	2803	82	120	0.067	6.915	0.8605	54.224	486.07	2828	82
81	9	A-LAMP	R	120	0.0682	7.076	0.8646	52.469	534.7	2767	81	120	0.068	7.0652	0.8665	52.509	527.65	2824	81
100	12	A-LAMP	D	120	0.0497	5.566	0.9333	19.626	471.8	2739	82	120	0.049	5.54	0.942	18.179	483.16	2781	82
101	12	A-LAMP	U	120	0.0481	5.501	0.953	15.797	460.3	2787	82	120	0.048	5.5042	0.9498	16.242	503.91	2945	84

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
			est	itial	Initial	Initial		Initial	Initial	Initial	tial	Final	Final				Final	nal	Final
Lamp\#	Model \#	Lamp Type	Fixture	Volts	Amps	Power	Initial pf	тНD	Lumens	сCT	CRI	Volts	Amps	Power	Final pf	THD	Lumens	CCT	CRI
102	12	A-LAMP	D	120	0.0488	5.525	0.9435	18.044	444.4	2762	82	120	0.049	5.5449	0.941	18.512	460.23	2789	82
103	12	A-LAMP	c	120	0.0492	5.572	0.9438	18.819	435	2726	82	120	0.049	5.5491	0.9432	18.788	446.04	2786	82
104	12	A-LAMP	c	120	0.0494	5.582	0.9416	20.088	421.7	2726	82	120	0.049	5.5527	0.941	19.788	417.3	2838	82
105	12	A-LAMP	c	120	0.0485	5.481	0.9418	18.557	411.7	2727	82	120	0.048	5.4345	0.9457	17.203	422.35	2790	82
106	12	A-LAMP	R	120	0.0491	5.545	0.9411	19.677	422.6	2718	82	120	0.048	5.4832	0.943	18.601	422.11	2808	82
107	12	A-LAMP	R	120	0.0479	5.436	0.9457	17.002	419.5	2724	82	120	0.047	5.328	0.9476	15.529	411.36	2784	82
108	12	A-LAMP	R	120	0.0503	5.616	0.9304	23.723	407.8	2773	82	120	0.049	5.5242	0.9333	21.637	413.55	2853	82
109	13	A-LAMP	U	120	0.0701	8.165	0.9706	10.571	553.2	2710	93	120							
110	13	A-LAMP	D	120	0.0701	8.129	0.9664	10.61	573.3	2729	92	120							
111	13	A-LAMP	U	120	0.0707	8.236	0.9708	10.81	566.3	2705	93	120							
112	13	A-LAMP	c	120	0.0711	8.302	0.973	11.512	531.7	2721	93	120							
113	13	A-LAMP	c	120	0.0705	8.181	0.967	10.856	566.5	2683	92	120							
114	13	A-LAMP	C	120	0.072	8.397	0.9719	12.501	540.2	2758	93	120							
115	13	A-LAMP	R	120	0.0705	8.208	0.9702	11.03	563.9	2721	93	120							
116	13	A-LAMP	R	120	0.0707	8.24	0.9712	11.635	544.4	2700	93	120							
117	13	A-LAMP	R	120	0.0694	8.058	0.9676	11.191	576.5	2698	92	120							
118	14	A-LAMP	D	120	0.0663	7.096	0.8919	46.662	493.5	2728	89	120	0.067	7.1084	0.8884	46.739	511.12	2769	89
119	14	A-LAMP	U	120	0.0666	7.079	0.8858	46.713	507.4	2748	90	120	0.066	7.0699	0.8867	46.892	524.4	2838	90
120	14	A-LAMP	D	120	0.0669	7.181	0.8945	45.836	509.5	2717	89	120	0.067	7.1706	0.8916	46.021	518.16	2726	89
121	14	A-LAMP	c	120	0.0662	7.08	0.8912	45.772	502.5	2724	89	120	0.066	7.0731	0.8906	45.846	505.56	2775	90
122	14	A-LAMP	C	120	0.0659	7.053	0.8919	46.198	494	2760	90	120							
123	14	A-LAMP	c	120	0.0655	7.012	0.8921	46.004	510.1	2719	89	120	0.066	7.0093	0.8892	46.257	503.56	2778	90
124	14	A-LAMP	R	120	0.0666	7.116	0.8904	46.552	493	2746	89	120	0.067	7.0946	0.8875	46.766	492.58	2780	89
125	14	A-LAMP	R	120	0.0661	7.06	0.8901	46.158	489.9	2750	90	120	0.066	7.0674	0.8889	46.293	485.08	2771	90
126	14	A-LAMP	R	120	0.0664	7.091	0.8899	45.74	462.7	2701	89	120							
127	15	A-LAMP	U	120	0.0656	7.007	0.8901	45.621	464	2638	92	120	0.065	6.992	0.8908	45.946	487.21	2756	93
128	15	A-LAMP	D	120	0.0661	7.099	0.895	45.141	461.7	2612	91	120	0.066	7.0389	0.8909	45.552	471.67	2662	91
129	15	A-LAMP	U	120	0.0663	7.074	0.8891	45.883	468	2630	92	120	0.066	7.0656	0.8905	45.948	491.94	2732	93
130	15	A-LAMP	c	120	0.0659	7.042	0.8905	46.54	489.2	2744	90	120	0.066	6.9964	0.8881	46.864	477.83	2781	90
131	15	A-LAMP		120	0.0668	7.134	0.89	46.239	484.9	2741	90	120	0.067	7.1052	0.8884	46.4	483.04	2766	90
132	15	A-LAMP	c	120	0.0655	6.957	0.8851	46.706	483.9	2755	90	120	0.065	6.9555	0.8873	46.839	491.7	2783	90
133	15	A-LAMP	R	120	0.068	7.277	0.891	45.174	472.9	2707	92	120							
134	15	A-LAMP	R	120	0.0663	7.097	0.892	46.052	465.4	2661	92	120	0.066	7.0563	0.886	46.802	478.56	2701	92
135	15	A-LAMP	R	120	0.0663	7.061	0.8875	45.94	477.3	2660	92	120							
136	16	A-LAMP	D	120	0.0512	5.677	0.924	26.691	462.8	5094	81	120	0.051	5.682	0.9219	27.493	486.96	5307	81
137	16	A-LAMP	U	120	0.0501	5.626	0.9358	21.079	478.5	4931	80	120	0.05	5.5815	0.9373	20.509	496.9	5009	80
138	16	A-LAMP	D	120	0.0489	5.55	0.9458	16.768	600.1	4878	81	120	0.049	5.5604	0.946	16.9	634.06	5001	82
139	16	A-LAMP	c	120	0.0496	5.586	0.9385	20.693	535.8	4935	83	120	0.05	5.5801	0.937	20.634	560.2	5033	83
140	16	A-LAMP	c	120	0.0492	5.582	0.9455	18.119	493.6	5038	83	120	0.049	5.5724	0.9427	18.322	514.84	5186	83
141	16	A-LAMP	c	120	0.0492	5.562	0.9421	18.176	491.9	4998	82	120	0.049	5.5714	0.9437	18.192	526.3	5117	82
142	16	A-LAMP	R	120	0.0496	5.549	0.9323	19.357	467.3	5116	82	120	0.049	5.5639	0.9406	18.88	488.66	5223	83
143	16	A-LAMP	R	120	0.0494	5.586	0.9423	19.499	461.7	5132	83	120	0.049	5.5068	0.9423	18.895	488.92	5223	83
144	16	A-LAMP	R	120	0.047	5.357	0.9498	14.761	572.4	4909	81	120	0.047	5.386	0.9479	14.909	600.47	5028	81
145	17	A-LAMP	D	120	0.1092	6.94	0.5296	146.8	446.2	2758	81	120	0.113	7.04	0.517	151.3	465	2806	82
146	17	A-LAMP	U	120	0.111	7.044	0.5288	145.03	467.9	2737	81	120	0.109	7.0826	0.54	139.59	495.8	2916	83
147	17	A-LAMP	D	120	0.1092	6.853	0.523	148.02	447.9	2746	81	120	0.107	6.9033	0.5357	141.97	461.35	2800	82
148	17	A-LAMP	c	120	0.1084	6.807	0.5233	147.65	456.2	2759	81	120	0.106	6.8479	0.537	141.4	455.88	2831	82
149	17	A-LAMP	c	120	0.1115	6.994	0.5227	150.09	450.1	2741	81	120	0.109	7.0333	0.539	140.35	457.99	2820	82
150	17	A-LAMP	c	120	0.1101	6.962	0.5269	147.24	452.8	2810	82	120	0.108	6.9653	0.5359	142.43	456.02	2852	82
151	17	A-LAMP	R	120	0.1102	7.008	0.5299	147.5	465.2	2769	82	120	0.108	6.9861	0.5377	141.02	469.41	2838	82
152	17	A-LAMP	R	120	0.1077	6.953	0.538	142.06	436.5	2795	82	120	0.109	7.0366	0.5388	140.72	449.04	2842	82
153	17	A-LAMP	R	120	0.1083	6.807	0.5238	148.62	444.3	2773	82	120	0.108	6.9691	0.5381	142.28	450.7	2836	82
154	18	A-LAMP	D	120	0.0951	9.858	0.8638	53.25	863.3	2651	82	120	0.095	9.8756	0.8627	53.499	884.86	2681	82
155	18	A-LAMP	U	120	0.0943	9.774	0.8637	53.87	844.2	2654	82	120	0.095	9.7674	0.8613	53.931	876.28	2682	83
156	18	A-LAMP	D	120	0.0943	9.77	0.8634	53.104	843.7	2648	85	120	0.094	9.7531	0.8631	53.3	866.6	2675	82
157	18	A-LAMP	c	120	0.0959	9.925	0.8624	54.636	874.2	2644	83	120	0.096	9.9461	0.8594	54.848	889.13	2661	83
158	18	A-LAMP	c	120	0.0938	9.737	0.865	53.067	869.3	2643	82	120	0.095	9.806	0.8647	53.224	871.06	2679	82
159	18	A-LAMP	c	120	0.0938	9.715	0.8631	53.529	859.5	2654	82	120	0.094	9.7667	0.8622	53.587	861.48	2683	82
160	18	A-LAMP	R	120	0.095	9.855	0.8645	53.701	882.1	2672	82	120	0.095	9.8657	0.8625	53.942	877.36	2694	83
161	18	A-LAMP	R	120	0.0958	9.938	0.8645	54.185	891.8	2678	82	120	0.096	9.9384	0.8614	54.332	858.98	2705	83
162	18	A-LAMP	R	120	0.0951	9.809	0.8595	54.04	880.7	2690	83	120	0.095	9.8879	0.8645	53.521	880.63	2715	83
163	19	A-LAMP	U	120	0.1008	10.651	0.8805	51.197	791.5	2758	81	120	0.1	10.606	0.8823	50.98	779.8	2767	81
164	19	A-LAMP	D	120	0.0991	10.522	0.8848	50.08	791.7	2775	81	120	0.098	10.385	0.8849	50.032	772.46	2780	81
165	19	A-LAMP	U	120	0.0988	10.5	0.8856	50.054	787.9	2769	81	120	0.099	10.495	0.8865	49.515	798.73	2850	82
166	19	A-LAMP	c	120	0.099	10.51	0.8847	50.035	768.4	2789	81	120							
167	19	A-LAMP	c	120	0.0995	10.613	0.8889	59.429	818.7	2759	81	120							
168	19	A-LAMP	c	120	0.1015	10.735	0.8814	51.479	769.8	2789	81	120	0.099	10.473	0.8827	50.878	702.08	2800	81
169	19	A-LAMP	R	120	0.0966	10.317	0.89	48.386	762.6	2790	81	120	0.097	10.352	0.8933	47.727	710.71	2790	81
170	19	A-LAMP	R	120	0.0987	10.486	0.8853	49.282	784.8	2778	81	120							
171	19	A-LAMP	R	120	0.0991	10.519	0.8845	49.858	788.4	2774	81	120							
172	20	A-LAMP	D	120	0.1002	11.82	0.983	6.69	748.8	2684	92	120							
173	20	A-LAMP	U	120	0.1023	12.091	0.9849	7.503	752.8	2709	92	120							
174	20	A-LAMP	D	120	0.1061	12.497	0.9815	10.372	768.2	2670	92	120							
175	20	A-LAMP	c	120	0.0991	11.744	0.9876	6.008	761.8	2765	93	120							

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
Lamp \#	Model \#	Lamp Type	$\begin{array}{\|l\|l} \hline \text { Test } \\ \text { Fixture } \end{array}$	Initial Volts	Initial Amps	Initial Power	Initial pf	$\begin{gathered} \hline \text { Initial } \\ \text { THD } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Initial } \\ \text { Lumens } \end{array}$	$\begin{aligned} & \hline \text { Initial } \\ & \text { CCT } \\ & \hline \end{aligned}$	Initial CRI	Final Volts	Final Amps	Final Power	Final pf	$\begin{aligned} & \hline \text { Final } \\ & \text { THD } \end{aligned}$	Final Lumens	$\begin{aligned} & \hline \text { Final } \\ & \text { CCT } \\ & \hline \end{aligned}$	Final CRI
176	20	A-LAMP	C	120	0.102	12.001	0.9805	7.05	742.9	2758	93	120							
177	20	A-LAMP	C	120	0.1005	11.886	0.9856	6.845	750.9	2712	92	120							
178	20	A-LAMP	R	120	0.103	12.066	0.9762	7.304	770.6	2673	92	120							
179	20	A-LAMP	R	120	0.1001	11.824	0.9843	6.419	759.6	2694	92	120							
180	20	A-LAMP	R	120	0.1006	11.891	0.985	6.64	736.1	2756	93	120							
190	22	A-LAMP	D	120	0.0769	9.088	0.9848	7.397	798.9	2821	81	120							
191	22	A-LAMP	U	120	0.0765	9.081	0.9892	7.122	815.7	2822	81	120							
192	22	A-LAMP	D	120	0.0768	9.105	0.988	7.601	838.3	2827	81	120	0.077	9.1087	0.9878	7.4001	818.68	2893	81
193	22	A-LAMP	C	120	0.0773	9.205	0.9923	7.479	855.2	2830	80	120							
194	22	A-LAMP	C	120	0.0771	9.131	0.9869	7.424	821.4	2828	80	120	0.073	8.6115	0.987	7.326	720.04	2905	81
195	22	A-LAMP	C	120	0.0765	9.076	0.9887	7.262	836.9	2820	80	120							
196	22	A-LAMP	R	120	0.0779	9.251	0.9896	7.273	769.6	2886	82	120	0.08	9.4591	0.9892	6.8672	670.22	3013	82
197	22	A-LAMP	R	120	0.0772	9.113	0.9837	7.419	755.1	2850	81	120	0.081	9.5794	0.9894	6.8927	649.83	2971	82
198	22	A-LAMP	R	120	0.0772	9.13	0.9855	7.482	830.9	2823	81	120	0.08	9.4588	0.9892	6.8057	798.36	2904	81
199	23	A-LAMP	U	120	0.0796	9.454	0.9897	7.295	759.1	2834	80	120							
200	23	A-LAMP	D	120	0.079	9.367	0.9881	7.033	782.1	2848	81	120							
201	23	A-LAMP	U	120	0.0793	9.43	0.991	7.097	800.5	2870	81	120							
202	23	A-LAMP	C	120	0.0778	9.24	0.9897	7.088	793.1	2870	81	120							
203	23	A-LAMP	C	120	0.0782	9.271	0.988	7.295	783.7	2843	81	120							
204	23	A-LAMP	C	120	0.0798	9.454	0.9873	7.112	760.6	2847	81	120							
205	23	A-LAMP	R	120	0.0785	9.284	0.9856	7.747	765.1	2846	81	120							
206	23	A-LAMP	R	120	0.0795	9.434	0.9889	6.905	731.3	2851	81	120							
207	23	A-LAMP	R	120	0.0789	9.328	0.9852	6.85	804.4	2834	81	120							
208	24	A-LAMP	D	120	0.107	12.748	0.9928	7.585	790.9	2627	92	120	0.107	12.803	0.993	7.4775	798.59	2626	92
209	24	A-LAMP	U	120	0.107	12.748	0.9928	6.811	783.2	2645	92	120	0.107	12.697	0.9935	6.7711	798.67	2648	92
210	24	A-LAMP	D	120	0.11	13.078	0.9908	8.181	824.9	2645	92	120	0.11	13.079	0.9928	8.0303	808.94	2740	91
211	24	A-LAMP	C	120	0.1075	12.817	0.9936	7.163	787.7	2643	92	120	0.108	12.853	0.9936	7.0234	738.25	2643	92
212	24	A-LAMP	C	120	0.1102	13.109	0.9913	7.74	854.8	2618	90	120	0.11	13.151	0.9932	7.5664	821.58	2656	90
213	24	A-LAMP	C	120	0.108	12.922	0.997	7.552	813.5	2657	91	120	0.109	12.983	0.9935	7.2667	783.96	2727	90
214	24	A-LAMP	R	120	0.1055	12.586	0.9942	6.898	758.9	2647	93	120	0.106	12.639	0.9935	6.5291	739.47	2630	92
215	24	A-LAMP	R	120	0.1091	13.015	0.9941	8.111	833.3	2723	91	120	0.11	13.089	0.9928	8.1475	816.74	2727	91
216	24	A-LAMP	R	120	0.1094	13.062	0.995	7.567	884.2	2674	91	120	0.109	13.049	0.9936	7.4294	864.08	2656	90
235	27	A-LAMP	U	120	0.0772	8.324	0.8985	41.34	709.3	2996	94	120	0.076	8.2349	0.9037	40.594	742.82	3078	95
236	27	A-LAMP	D	120	0.0769	8.333	0.903	41.248	719.5	3005	94	120	0.076	8.2387	0.9028	40.884	736.49	3016	94
237	27	A-LAMP	U	120	0.077	8.356	0.9043	41.142	699.7	3017	94	120	0.077	8.332	0.9049	40.351	730.43	3093	95
238	27	A-LAMP	C	120	0.078	8.493	0.9074	39.964	738.4	2997	94	120	0.077	8.3445	0.9076	39.23	727.47	3010	94
239	27	A-LAMP	C	120	0.0789	8.603	0.9086	39.627	716.9	2999	94	120	0.078	8.4761	0.9104	38.893	726.27	3010	94
240	27	A-LAMP	C	120	0.076	8.281	0.908	39.61	713.1	2997	94	120	0.074	8.1476	0.9119	38.101	706.31	3016	94
241	27	A-LAMP	R	120	0.0783	8.572	0.9123	38.62	732.6	2997	95	120	0.077	8.4313	0.9141	37.521	722.71	3008	95
242	27	A-LAMP	R	120	0.0777	8.429	0.904	41.118	721.9	2978	95	120	0.076	8.2792	0.9049	40.321	696.63	2983	95
243	27	A-LAMP	R	120	0.077	8.453	0.9148	40.436	725.8	3001	94	120	0.076	8.3087	0.9085	39.379	699.31	3011	94
253	29	A-LAMP	D	120	0.0976	10.578	0.9032	45.495	787.1	2684	91	120	0.097	10.515	0.9029	45.484	806.31	2724	91
254	29	A-LAMP	U	120	0.0983	10.664	0.904	45.343	805.9	2677	91	120	0.097	10.511	0.9043	45.054	816.09	2787	92
255	29	A-LAMP	D	120	0.0988	10.726	0.9047	45.351	808.7	2697	91	120	0.099	10.712	0.9041	45.041	799.2	2755	91
256	29	A-LAMP	C	120	0.0985	10.69	0.9044	45.175	818.7	2685	91	120	0.097	10.541	0.9032	45.271	801.02	2738	91
257	29	A-LAMP	C	120	0.0982	10.615	0.9008	45.513	814.1	2673	91	120	0.098	10.658	0.9043	45	812.4	2727	91
258	29	A-LAMP	C	120	0.0996	10.802	0.9038	45.041	814.6	2677	91	120	0.1	10.845	0.9058	44.583	809.74	2734	91
259	29	A-LAMP	R	120	0.0968	10.449	0.8995	45.995	798.1	2690	91	120	0.098	10.579	0.9031	45.387	816.43	2747	91
260	29	A-LAMP	R	120	0.0974	10.554	0.903	45.229	791.7	2667	91	120	0.096	10.459	0.9032	45.019	804.82	2702	91
261	29	A-LAMP	R	120	0.0974	10.517	0.8998	45.542	789.6	2685	91	120	0.098	10.602	0.904	44.889	798.1	2729	91
262	30	A-LAMP	D	120	0.079	9.401	0.9917	6.929	921.3	5170	82	120	0.079	9.4226	0.9897	6.8109	906.16	5489	83
263	30	A-LAMP	U	120	0.0785	9.303	0.9876	7.32	919.4	5183	82	120							
264	30	A-LAMP	D	120	0.0777	9.198	0.9865	7.417	925.9	5134	82	120	0.078	9.3117	0.9886	7.0137	926.08	5388	83
265	30	A-LAMP	C	120	0.0785	9.321	0.9895	7.245	886.9	5195	82	120							
266	30	A-LAMP	C	120	0.0787	9.37	0.9922	7.202	934.5	5123	82	120							
267	30	A-LAMP	C	120	0.0797	9.46	0.9891	6.998	900.9	5303	83	120							
268	30	A-LAMP	R	120	0.0791	9.417	0.9921	7.232	906.6	5286	82	120							
269	30	A-LAMP	R	120	0.0784	9.292	0.9877	7.206	932.1	5262	82	120							
270	30	A-LAMP	R	120	0.0801	9.462	0.9844	6.539	915.9	5059	83	120							
271	31	A-LAMP	D	120	0.099	10.684	0.8993	46.574	794.2	2751	82	120							
272	31	A-LAMP	U	120	0.1	10.779	0.8983	45.981	791.4	2696	82	120							
273	31	A-LAMP	D	120	0.1017	10.968	0.8987	46.351	812.5	2706	81	120	0.1	10.838	0.8993	45.94	794.13	2730	81
274	31	A-LAMP	C	120	0.1007	10.872	0.8997	46.363	772.5	2719	82	120							
275	31	A-LAMP	C	120	0.1008	10.801	0.8929	47.824	775.2	2694	81	120							
276	31	A-LAMP	C	120	0.1015	10.986	0.902	45.609	791.3	2694	81	120							
277	31	A-LAMP	R	120	0.1017	10.93	0.8956	47.115	756.1	2712	81	120							
278	31	A-LAMP	R	120	0.1003	10.757	0.8937	47.781	785.3	2705	81	120							
279	31	A-LAMP	R	120	0.1018	11.021	0.9022	44.951	793.7	2702	81	120							
289	33	A-LAMP	U	120	0.1015	10.785	0.8855	50.117	898.6	5206	83	120							
290	33	A-LAMP	D	120	0.1011	10.737	0.885	50.497	880.5	5219	83	120	0.1	10.64	0.8849	50.326	890.97	5188	83
291	33	A-LAMP	U	120	0.0993	10.545	0.8849	50.152	839.7	5242	81	120	0.098	10.454	0.8848	50.172	851.51	5239	81
292	33	A-LAMP	C	120	0.0994	10.614	0.8898	48.688	888.3	5240	83	120							
293	33	A-LAMP	C	120	0.099	10.562	0.8891	49.475	854.4	5265	83	120							
294	33	A-LAMP	C	120	0.0983	10.486	0.8889	49.158	827.8	5354	82	120	0.098	10.481	0.8913	48.579	804.85	5322	82

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
Lamp \#	Model \#	Lamp Type	$\begin{aligned} & \text { Test } \\ & \text { Fixture } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Initial } \\ \text { Volts } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Initial } \\ \text { Ampos } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Initial } \\ \text { Power } \end{array}$	Initial pf	$\begin{array}{\|l\|l\|} \hline \text { Initial } \\ \text { itho } \\ \text { THe } \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Lumens } \\ \text { Lut } \end{array}$	Initial CCT	Initial	$\begin{array}{\|l\|l\|} \hline \text { Final } \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|} \hline \text { Final } \\ \text { Amps } \end{array}$	$\begin{array}{\|l\|} \hline \text { Final } \\ \hline \text { Power } \end{array}$	Final pf	$\begin{array}{l\|} \hline \text { Final } \\ \hline \text { THD } \\ \text { THi } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Linal } \\ \text { Lumens } \end{array}$	$\begin{aligned} & \hline \text { Final } \\ & \hline \text { CT } \end{aligned}$	$\begin{aligned} & \hline \text { Final } \\ & \text { CRI } \end{aligned}$
295	33	A-LAMP	R	120	0.0947	10.173	0.8952	47.101	858.5	5324	83	120							
296	33	A-LAMP	R	120	0.0944	10.118	0.8932	47.487	871.2	5174	83	120							
297	33	A-LAMP	R	120	0.0954	10.252	0.8955	47.548	867.1	5245	83	120							
316	36	A-LAMP	D	120	0.1395	15.151	0.9051	45.151	1725.5	5115	84	120	0.14	15.128	0.9026	45.181	1722.8	5130	84
317	36	A-LAMP	U	120	0.1381	14.981	0.904	45.367	1722	5162	85	120	0.139	15.008	0.9016	45.613	1747.3	5176	84
318	36	A-LAMP	D	120	0.1405	15.231	0.9034	45.708	1727.2	5134	84	120	0.141	15.188	0.9006	45.936	1741.2	5152	84
319	36	A-LAMP	c	120	0.1374	14.948	0.9066	44.338	1749.9	5146	84	120	0.138	15.023	0.9057	44.508	1751.1	5126	84
320	36	A-LAMP	c	120	0.1381	15.026	0.9067	44.952	1751.6	5171	84	120							
321	36	A-LAMP	c	120	0.138	15.018	0.9069	44.725	1770.4	5155	84	120	0.139	15.064	0.9046	44.984	1779.3	5178	84
322	36	A-LAMP	R	120	0.1396	15.121	0.9026	45.011	1747.9	5195	85	120							
323	36	A-LAMP	R	120	0.1389	15.105	0.9062	44.923	1766.9	5127	85	120	0.138	14.953	0.9031	45.276	1805.7	5080	84
324	36	A-LAMP	R	120	0.1395	15.121	0.9033	44.718	1667.1	5111	84	120	0.14	15.235	0.9047	44.834	1707.2	5089	83
325	37	A-LAMP	U	120	0.1161	13.279	0.9531	28.49	810.1	2642	96	120	0.117	13.273	0.9453	29.553	840.75	2686	96
326	37	A-LAMP	D	120	0.1138	12.806	0.9378	33.389	779.7	2641	95	120	0.114	12.879	0.9435	29.866	805.25	2648	95
327	37	A-LAMP	U	120	0.1118	12.831	0.9564	29.994	805.7	2651	95	120	0.114	12.861	0.9408	31.096	858.74	2704	96
328	37	A-LAMP	c	120	0.113	12.939	0.9542	29.144	806.8	2645	95	120	0.115	13.039	0.9417	30.839	551.47	2808	95
329	37	A-LAMP	c	120	0.1147	12.995	0.9441	30.347	797.5	2671	95	120	0.116	13.143	0.9418	31.188	557.46	2785	95
330	37	A-LAMP	c	120	0.113	12.778	0.9423	31.855	784.5	2660	95	120	0.117	12.93	0.9231	35.109	596.2	2748	95
331	37	A-LAMP	R	120	0.1131	12.818	0.9444	31.387	785.6	2651	96	120	0.115	12.949	0.9353	32.881	709.15	2667	95
332	37	A-LAMP	R	120	0.1147	12.945	0.9405	31.445	794.7	2662	96	120	0.116	13.037	0.9395	31.482	648.94	2714	95
333	37	A-LAMP	R	120	0.1121	12.807	0.9521	29.252	771.8	2650	97	120	0.114	12.91	0.9447	29.772	465.62	3013	97
334	38	A-LAMP	D	120	0.0938	10.24	0.9097	34.204	791.5	2747	91	120	0.094	10.174	0.9031	35.243	797.4	2785	91
335	38	A-LAMP	U	120	0.0928	10.047	0.9022	34.004	784.3	2732	91	120	0.093	10.033	0.9018	37.088	785.8	2753	91
336	38	A-LAMP	D	120	0.0944	10.145	0.8956	29.532	779.2	2754	91	120							
337	38	A-LAMP	c	120	0.0945	10.247	0.9036	34.246	813.7	2742	91	120							
338	38	A-LAMP	c	120	0.0931	10.056	0.9001	36.601	797.5	2740	91	120							
339	38	A-LAMP	c	120	0.0938	10.237	0.9095	31.96	791.1	2752	90	120							
340	38	A-LAMP	R	120	0.0991	10.347	0.8701	34.356	809.4	2752	91	120							
341	38	A-LAMP	R	120	0.0938	10.086	0.8961	34.507	791.5	2725	91	120							
342	38	A-LAMP	R	120	0.0914	9.775	0.8912	33.549	785.8	2773	90	120							
343	39	A-LAMP	U	120	0.0912	10.872	0.9934	5.274	878.9	2752	81	120	0.092	10.894	0.9917	5.1187	859.8	2784	82
344	39	A-LAMP	D	120	0.0922	10.973	0.9918	3.456	767.7	2691	82	120	0.091	10.863	0.9916	3.4013	741.86	2785	82
345	39	A-LAMP	U	120	0.0939	11.144	0.989	3.253	788.9	2701	82	120							
346	39	A-LAMP	c	120	0.0929	11.047	0.9909	3.255	765.4	2700	82	120	0.093	11.134	0.9925	3.143	725.06	2802	82
347	39	A-LAMP	c	120	0.0901	10.706	0.9902	3.277	750.4	2700	82	120	0.089	10.539	0.9916	3.3667	703.81	2788	82
348	39	A-LAMP	c	120	0.0914	10.899	0.9937	3.521	786.1	2678	82	120	0.091	10.819	0.9914	3.4447	739.57	2764	82
349	39	A-LAMP	R	120	0.0924	11.023	0.9941	3.403	778.9	2710	82	120	0.093	11.05	0.9919	3.3335	753.38	2774	82
350	39	A-LAMP	R	120	0.0904	10.764	0.9923	3.458	758.7	2720	82	120	0.091	10.803	0.9917	3.3615	741.72	2807	82
351	39	A-LAMP	R	120	0.092	10.92	0.9891	3.468	772.4	2713	82	120	0.092	10.935	0.9914	3.4214	747.71	2779	82
352	40	A-LAMP	D	120	0.1101	12.209	0.9241	27.127	1131.6	3047	81	120	0.109	12.078	0.9213	26.392	1037.8	3168	81
353	40	A-LAMP	U	120	0.106	11.77	0.9253	30.361	1091	3037	81	120							
354	40	A-LAMP	D	120	0.1108	12.182	0.9162	30.025	1144.4	3023	81	120	0.11	12.101	0.9147	29.64	1042.8	3123	82
355	40	A-LAMP	c	120	0.1103	12.264	0.9266	26.941	1112.2	3038	81	120	0.11	12.242	0.9249	25.542	1069	3103	81
356	40	A-LAMP	c	120	0.1093	11.95	0.9111	28.936	1083.8	3022	81	120	0.106	11.851	0.932	28.571	1090.5	3069	81
357	40	A-LAMP	c	120	0.0998	11.017	0.9199	32.863	1017.9	3006	80	120							
358	40	A-LAMP	R	120	0.1082	11.761	0.9058	30.022	1108.3	3039	81	120	0.107	11.653	0.908	29.367	1046.9	3097	81
359	40	A-LAMP	R	120	0.1105	12.145	0.9159	29.419	1111.4	3019	81	120	0.11	12.039	0.9118	30.108	1025.6	3120	82
360	40	A-LAMP	R	120	0.1111	12.213	0.9161	30.957	1130.3	3036	81	120	0.11	13.079	0.9928	8.0303	1037.2	3125	81
361	41	A-LAMP	U	120	0.1146	12.281	0.893	47.021	1200	2740	82	120	0.115	12.309	0.8938	47.224	1231.9	2739	82
362	41	A-LAMP	D	120	0.1159	12.424	0.8933	47.567	1183.8	2741	82	120	0.116	12.47	0.8926	47.588	1213	2751	82
363	41	A-LAMP	U	120	0.1158	12.36	0.8895	48.936	1209.1	2734	82	120	0.116	12.362	0.8903	48.263	1256.8	2728	82
364	41	A-LAMP	c	120	0.1158	12.385	0.8913	48.065	1206.6	2735	82	120	0.116	12.435	0.8904	48.147	1192.1	2760	82
365	41	A-LAMP	c	120	0.116	12.453	0.8946	47.651	1246.6	2751	82	120	0.116	12.41	0.8918	47.76	1246	2762	82
366	41	A-LAMP	c	120	0.1149	12.29	0.8914	48.053	1193.2	2756	82	120							
367	41	A-LAMP	R	120	0.1154	12.386	0.8944	46.999	1235.1	2730	82	120	0.116	12.424	0.894	47.212	1232	2728	81
368	41	A-LAMP	R	120	0.1148	12.275	0.891	47.277	1211.3	2724	82	120	0.115	12.348	0.8924	47.432	1230.3	2724	81
369	41	A-LAMP	R	120	0.1146	12.375	0.8999	47.661	1186.6	2730	82	120							
379	43	A-LAMP	U	120	0.1398	14.338	0.8547	58.83	1012.7	2860	86	120							
380	43	A-LAMP	D	120	0.1391	14.382	0.8616	58.261	1058.8	2795	85	120	0.141	14.578	0.8633	57.775	1066.3	2816	85
381	43	A-LAMP	U	120	0.1385	14.293	0.86	58.793	1035	2812	85	120	0.14	14.464	0.8625	57.926	1052.9	2819	85
382	43	A-LAMP	c	120	0.1394	14.395	0.8605	58.507	1171.4	2802	82	120							
383	43	A-LAMP	c	120	0.1393	14.323	0.8568	59.538	997.6	2839	86	120							
384	43	A-LAMP	c	120	0.1378	14.192	0.8582	58.88	1037.4	2765	85	120	0.137	14.2	0.8617	58.021	993.48	2762	85
385	43	A-LAMP	R	120	0.1397	14.28	0.8518	59.177	1035.5	2783	85	120							
386	43	A-LAMP	R	120	0.1402	14.409	0.8565	59.703	1043.3	2802	85	120	0.14	14.458	0.8594	58.888	988.9	2786	85
387	43	A-LAMP	R	120	0.1402	14.401	0.856	58.407	1046.2	2798	85	120							
388	44	A-LAMP	D	120	0.1084	12.763	0.9812	10.19	1025.2	2846	81	120							
389	44	A-LAMP	U	120	0.1023	12.106	0.9862	7.305	983.7	2831	81	120							
390	44	A-LAMP	D	120	0.1052	12.427	0.9844	9.252	1028.4	2841	81	120							
391	44	A-LAMP	c	120	0.1026	12.111	0.9837	7.769	964.8	2828	82	120							
392	44	A-LAMP	c	120	0.1027	12.142	0.9852	7.853	978	2848	82	120							
393	44	A-LAMP	c	120	0.1029	12.113	0.981	8.215	1023.8	2841	81	120							
394	44	A-LAMP	R	120	0.0995	11.76	0.9849	6.44	997.6	2824	81	120							
395	44	A-LAMP	R	120	0.1017	12.04	0.9866	7.118	983.1	2790	81	120							

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
Lamp \#	Model \#	Lamp Type	Test Fixture	Initial Volts	Initial Amps	Initial Power	Initial pf	$\begin{gathered} \text { Initial } \\ \text { THD } \end{gathered}$	Initial Lumens	Initial CCT	Initial CRI	Final Volts	Final Amps	Final Power	Final pf	$\begin{aligned} & \hline \text { Final } \\ & \text { THD } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Final } \\ \text { Lumens } \end{array}$	Final CCT	Final CRI
396	44	A-LAMP	R	120	0.1027	12.124	0.9838	7.447	972	2808	82	120							
397	45	A-LAMP	U	120	0.1187	13.772	0.9669	22.123	1268.3	5240	82	120	0.071	8.4092	0.9806	8.1612	698.16	5359	82
398	45	A-LAMP	D	120	0.1151	13.44	0.9731	17.66	1220	5241	82	120							
399	45	A-LAMP	U	120	0.1096	12.92	0.9824	12.676	1184	5227	82	120							
400	45	A-LAMP	C	120	0.1027	12.133	0.9845	7.655	1120	5150	82	120							
401	45	A-LAMP	C	120	0.1063	12.568	0.9853	12.189	1201.8	5185	81	120	0.103	12.226	0.9856	9.8162	984.76	5586	83
402	45	A-LAMP	C	120	0.11	12.85	0.9735	12.934	1194	5262	82	120	0.117	13.61	0.9691	21.8	1069.6	5741	83
403	45	A-LAMP	R	120	0.1114	13.08	0.9785	15.276	1194	5277	82	120							
404	45	A-LAMP	R	120	0.1045	12.349	0.9848	8.707	1143	5157	81	120							
405	45	A-LAMP	R	120	0.1038	12.244	0.983	8.527	1165	5209	82	120	0.1	11.855	0.9863	7.2942	1018.9	5511	83
406	46	A-LAMP	D	120	0.1374	14.93	0.9055	44.684	1592	2729	82	120	0.138	14.949	0.9054	44.629	1603.8	2756	82
407	46	A-LAMP	U	120	0.1397	15.111	0.9014	46.18	1602.7	2727	82	120	0.14	15.132	0.899	46.317	1621.7	2724	81
408	46	A-LAMP	D	120	0.1373	14.889	0.9037	43.471	1604.6	2763	82	120							
409	46	A-LAMP	C	120	0.1376	14.989	0.9078	44.291	1580	2751	82	120							
410	46	A-LAMP	C	120	0.138	14.941	0.9022	45.122	1542	2693	82	120	0.139	15.082	0.9036	45.205	1560	2691	81
411	46	A-LAMP	C	120	0.1513	17.608	0.9698	24.48	1596	2729	81	120							
412	46	A-LAMP	R	120	0.1408	15.252	0.9027	45.895	1610	2729	82	120	0.142	15.295	0.9	46.187	1642.8	2738	82
413	46	A-LAMP	R	120	0.1502	17.552	0.9738	23.57	1610	2730	81	120							
414	46	A-LAMP	R	120	0.138	14.977	0.9044	45.603	1589.2	2773	82	120	0.139	15.065	0.9019	45.637	1631.6	2748	82
415	47	A-LAMP	U	120	0.14	16.146	0.9611	22.209	1502	2682	81	120	0.031	2.2095	0.5917	93.037	187.37	2927	86
416	47	A-LAMP	D	120	0.1427	16.247	0.9488	27.006	1498.2	2657	82	120	0.142	16.199	0.954	23.638	1520	2669	82
417	47	A-LAMP	U	120	0.1424	16.354	0.957	23.313	1539	2681	82	120	0.142	16.3	0.9574	22.987	1541.8	2687	82
418	47	A-LAMP	C	120	0.1431	16.448	0.9578	23.86	1528	2690	82	120							
419	47	A-LAMP	C	120	0.1438	16.278	0.9433	28.529	1530	2646	82	120							
420	47	A-LAMP	C	120	0.1456	16.616	0.951	22.955	1537	2645	82	120							
421	47	A-LAMP	R	120	0.139	15.781	0.9461	24.977	1495	2668	82	120							
422	47	A-LAMP	R	120	0.1412	16.016	0.9452	27.288	1445	2636	83	120	0.02	1.1281	0.4813	67.008	57.148	2578	83
423	47	A-LAMP	R	120	0.1393	15.922	0.9525	23.168	1520	2692	81	120	0.02	1.0651	0.4524	67.524	60.168	2633	81
424	48	A-LAMP	D	120	0.148	17.582	0.99	2.969	1445	2814	81	120							
425	48	A-LAMP	U	120	0.1501	17.837	0.9903	6.135	1545.7	2868	82	120							
426	48	A-LAMP	D	120	0.1492	17.676	0.9873	5.218	1501	2807	81	120							
427	48	A-LAMP	C	120	0.1495	17.755	0.9897	3.211	1494	2821	82	120							
428	48	A-LAMP	C	120	0.1472	17.499	0.9907	2.999	1494	2846	81	120							
429	48	A-LAMP	C	120	0.1502	17.791	0.9871	3.577	1551	2806	81	120							
430	48	A-LAMP	R	120	0.149	17.709	0.9904	3.108	1480	2857	82	120							
431	48	A-LAMP	R	120	0.1515	17.994	0.9898	3.993	1597	2802	82	120							
432	48	A-LAMP	R	120	0.1487	17.715	0.9928	3.34	1535	2872	82	120							
433	49	A-LAMP	U	120	0.1299	14.914	0.9568	27.769	1432	2715	90	120	0.129	14.83	0.9568	27.44	1435.4	2740	90
434	49	A-LAMP	D	120	0.1276	14.73	0.962	25.759	1383	2711	90	120	0.127	14.615	0.9617	25.395	1366.1	2784	90
435	49	A-LAMP	U	120	0.1285	14.779	0.9584	26.698	1393	2716	90	120	0.123	14.73	0.9951	26.386	1393.8	2751	90
436	49	A-LAMP	C	120	0.1295	14.948	0.9619	25.177	1382	2713	91	120	0.129	14.947	0.9631	24.97	1299.3	2807	91
437	49	A-LAMP	C	120	0.1319	15.166	0.9582	26.66	1407	2725	91	120							
438	49	A-LAMP	C	120	0.1297	14.996	0.9635	24.885	1388	2707	91	120							
439	49	A-LAMP	R	120	0.131	15.046	0.9571	27.581	1398	2699	92	120	0.131	15.03	0.9571	27.473	1350.1	2791	92
440	49	A-LAMP	R	120	0.1378	16.045	0.9703	22.139	1457	2706	92	120	0.128	14.826	0.9625	25.255	1364.1	2753	92
441	49	A-LAMP	R	120	0.1292	14.917	0.9621	25.784	1420	2723	90	120	0.128	14.754	0.9604	25.619	1189.6	2891	90
442	50	GLOBE	D	120	0.0449	4.887	0.907	39.178	339	2703	81	120	0.045	4.9151	0.9108	38.915	349.64	2755	82
443	50	GLOBE	U	120	0.0441	4.842	0.915	37.256	342.7	2693	82	120	0.044	4.8568	0.9144	37.095	350.2	2706	82
444	50	GLOBE	D	120	0.0445	4.866	0.9112	38.138	343.4	2727	82	120	0.044	4.8653	0.9132	38.045	347.44	2728	82
445	51	GLOBE	U	120	0.0515	4.449	0.7199	89.235	395.7	2665	81	120	0.054	4.54	0.6958	89.6	399.8	2683	81
446	51	GLOBE	D	120	0.0511	4.512	0.7358	87.651	392	2639	82	120	0.053	4.5645	0.7142	87.656	410.66	2698	82
447	51	GLOBE	U	120	0.0517	4.528	0.7299	87.832	385.4	2657	81	120	0.054	4.53	0.9336	87.85	402.1	2662	81
448	52	GLOBE	D	120	0.0448	4.421	0.8224	48.411	299	2746	81	120	0.045	4.4072	0.8224	48.693	307.83	2805	82
449	52	GLOBE	U	120	0.0446	4.362	0.815	48.719	300.5	2800	83	120	0.044	4.3796	0.8214	48.653	308.6	2771	82
450	52	GLOBE	D	120	0.0441	4.315	0.8154	48.697	289.8	2848	83	120	0.044	4.3013	0.8163	48.934	295.35	2852	83
451	53	GLOBE	U	120	0.06	4.361	0.6057	69.409	288.1	2718	83	120	0.06	4.4164	0.6145	68.372	292.57	2738	82
452	53	GLOBE	D	120	0.0585	4.265	0.6075	69.403	280.2	2723	83	120	0.058	4.2805	0.6127	68.104	280.34	2701	82
453	53	GLOBE	U	120	0.0592	4.31	0.6067	69.943	282.2	2732	83	120	0.059	4.3345	0.6132	69.061	283.72	2743	83
454	54	GLOBE	D	120	0.0735	7.445	0.8441	57.61	715.2	2759	81	120	0.075	7.5095	0.8393	57.975	739.72	2794	81
455	54	GLOBE	U	120	0.0728	7.393	0.8463	59.245	715.9	2762	81	120	0.074	7.3847	0.8306	59.375	753.65	2837	82
456	54	GLOBE	D	120	0.0742	7.47	0.8389	59.255	704.9	2771	82	120	0.069	7.3368	0.8901	48.385	731.79	2774	81
460	56	GLOBE	D	120	0.0855	7.171	0.6989	98.613	539.3	3021	80	120	0.086	7.216	0.6991	98.595	556.11	3012	80
461	56	GLOBE	U	120	0.0842	7.1	0.7027	99.202	533.6	3009	80	120	0.088	7.099	0.669	70.26	550.75	3006	80
462	56	GLOBE	D	120	0.0864	7.309	0.705	97.785	525.9	3021	80	120	0.087	7.3191	0.7017	97.131	544.05	3071	81
463	57	GLOBE	U	120	0.0635	7.555	0.9915	6.852	526.4	2733	91	120							
464	57	GLOBE	D	120	0.066	7.818	0.9871	8.084	524.9	2740	91	120	0.066	7.8598	0.989	7.1037	529.14	2750	90
465	57	GLOBE	U	120	0.0649	7.658	0.9833	7.454	508.8	2721	90	120	0.065	7.6637	0.9874	8.3971	523.49	2748	91
466	58	GLOBE	D	120	0.0682	7.436	0.9086	40.359	681.3	2701	81	120	0.068	7.4468	0.9098	40.131	697.7	2741	81
467	58	GLOBE	U	120	0.0671	7.33	0.9103	39.456	696.9	2797	82	120	0.067	7.3463	0.9119	39.203	710.64	2820	82
468	58	GLOBE	D	120	0.0682	7.435	0.9085	40.131	686	2704	82	120	0.068	7.4035	0.9077	40.326	695.49	2721	82
469	59	GLOBE	U	120	0.0563	6.655	0.9851	6.885	516.5	3076	83	120	0.056	6.676	0.9869	6.9614	547.4	3064	83
470	59	GLOBE	D	120	0.0523	6.207	0.989	6.841	513.7	3057	82	120	0.053	6.2059	0.9843	7.866	532.32	3052	82
471	59	GLOBE	D	120	0.0904	7.744	0.7139	95.773	461.5	3151	83	120	0.091	7.688	0.7075	95.437	449.49	3195	83
472	60	TORPEDO/BULLET	D	120	0.0383	1.834	0.399	43.478	130.1	2767	84	120	0.037	1.8136	0.4043	45.112	108.63	2599	81

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
			Test	nitial	Initial	Initial		Initial	Initial	Initial	nitia	Final	Final	Final		Final	Final	Fina	Final
Lamp\#	Model \#	Lamp Type	Fixtur	Volts	Amps	Power	Initial pf	THD	umens	CCT	CRI	Volts	Amps	Power	Final pf	THD	Lumens	CCT	CRI
473	60	TORPEDO/BULLET	U	120	0.0393	1.868	0.3961	43.455	130.8	2688	82	120	0.039	1.8715	0.3982	43.523	139	3193	88
474	60	TORPEDO/BULLET	D	120	0.0391	1.853	0.3949	43.114	127.9	2654	83	120	0.039	1.856	0.397	43.315	136.01	2687	82
475	60	TORPEDO/BULLET	c	120	0.0387	1.841	0.3964	43.276	123.7	2679	82	120	0.039	1.8454	0.3964	43.22	133.4	2803	83
476	60	TORPEDO/BULLET	c	120	0.039	1.865	0.3985	43.441	126.7	2655	83	120	0.039	1.8702	0.3985	43.319	137.38	2779	84
477	60	TORPEDO/BULLET	c	120	0.0388	1.861	0.3997	43.595	129.8	2777	84	120	0.039	1.8541	0.399	43.814	136.2	281	84
478	61	TORPEDO/BULLET	U	120	0.0438	3.342	0.6358	77.217	149.3	2583	78	120	0.043	3.3467	0.6445	76.652	147.36	3176	85
479	61	TORPEDO/BULLET	D	120	0.0435	3.353	0.6423	77.521	156.6	2752	79	120	0.043	3.3267	0.6387	77.284	130.49	2793	79
480	61	TORPEDO/BULLET	U	120	0.0435	3.365	0.6446	77.541	154.1	2665	78	120	0.043	3.3479	0.6497	76.003	148.24	3235	85
481	61	TORPEDO/BULLET	c	120	0.0434	3.338	0.6409	74.769	161.2	2845	80	120	0.044	3.3668	0.6449	74.384	143.54	2954	80
482	61	TORPEDO/BULLET	c	120	0.0442	3.384	0.638	76.731	161.6	2673	79	120	0.044	3.391	0.6414	76.381	137.3	2749	79
483	61	TORPEDO/BULLET	c	120	0.044	3.383	0.6407	75.971	157.3	2590	77	120	0.044	3.4026	0.645	75.416	124.87	2743	79
484	62	TORPEDO/BULLET	D	120	0.0362	3.035	0.6987	94.682	300.7	4887	82	120	0.037	3.0467	0.694	95.169	304.1	5009	82
485	62	TORPEDO/BULLET	U	120	0.036	3.005	0.6956	95.456	304.2	4900	81	120	0.036	3.0043	0.6932	96.324	325.65	5415	84
486	62	TORPEDO/BULLET	D	120	0.0353	2.969	0.7009	92.756	294.9	5000	82	120	0.035	2.9555	0.6988	93.296	304.49	5068	82
487	62	TORPEDO/BULLET	c	120	0.0356	3.018	0.7065	92.145	311.3	4910	82	120	0.036	3.0077	0.7023	92.704	313.77	5024	82
488	62	TORPEDO/BULLET	c	120	0.0359	3.001	0.6966	94.01	291.7	4969	83	120	0.036	3.0086	0.6968	94.387	296.76	5067	82
489	62	TORPEDO/BULLET	c	120	0.0358	3.006	0.6997	94.159	290.1	4948	82	120	0.036	3.0218	0.6971	94.836	298.63	5077	81
490	63	TORPEDO/BULLET	U	120	0.0308	3.291	0.8904	45.692	246.7	2674	79	120	0.031	3.2919	0.8893	45.997	257.52	2736	80
491	63	TORPEDO/BULLET	D	120	0.0313	3.341	0.8895	47.065	220.6	2749	83	120	0.031	3.3442	0.8871	47.193	237.89	2761	82
492	63	TORPEDO/BULLET	U	120	0.0314	3.33	0.8838	48.287	244	2711	80	120	0.032	3.3315	0.8807	48.515	267.14	2972	84
493	63	TORPEDO/BULLET	c	120	0.031	3.311	0.8901	46.221	222.5	2464	83								
494	63	TORPEDO/BULLET	c	120	0.0308	3.291	0.8904	45.918	250.8	2722	81	120	0.031	3.2869	0.888	46.182	259.4	2742	81
495	63	TORPEDO/BULLET	c	120	0.0311	3.341	0.8952	45.242	238	2679	80	120	0.031	3.3486	0.892	45.483	247.54	2708	81
496	64	TORPEDO/BULLET	D	120	0.0422	4.137	0.8169	46.474	360.5	4926	84	120	0.042	4.1193	0.8172	46.443	374.99	5050	84
497	64	TORPEDO/BULLET	U	120	0.0425	4.139	0.8116	47.681	359.6	4908	82	120	0.042	4.1431	0.8174	47.369	363.44	5035	82
498	64	TORPEDO/BULLET	D	120	0.0416	4.07	0.8153	46.567	368	4955	84	120	0.042	4.0926	0.8195	46.047	372.05	5039	84
499	64	TORPEDO/BULLET	c	120	0.043	4.206	0.8151	46.625	371.6	4988	83	120	0.042	4.1723	0.8199	46.531	370.98	5085	83
500	64	TORPEDO/BULLET	c	120	0.0425	4.225	0.8284	46.805	377.8	5043	83	120	0.042	4.1906	0.825	46.93	377.78	5157	84
501	64	TORPEDO/BULLET	c	120	0.0427	4.185	0.8167	47.317	370.5	4964	83	120	0.042	4.1682	0.8181	47.014	370.91	5060	83
508	66	TORPEDO/BULLET	U	120	0.0473	5.23	0.9214	37.727	412.9	2723	82	120	0.047	5.2066	0.9206	37.455	434.43	2736	82
509	66	TORPEDO/BULLET	D	120	0.047	5.202	0.9223	36.902	394.5	2740	83	120	0.047	5.2235	0.9223	36.709	367.23	2828	82
510	66	TORPEDO/BULLET	D	120	0.0464	5.139	0.923	35.899	411.5	2759	82	120	0.046	5.1543	0.9245	35.889	432.8	2772	82
511	66	TORPEDO/BULLET	c	120	0.0455	5.036	0.9223	36.056	404.2	2730	82	120	0.046	5.0584	0.9228	36.161	415.72	2738	82
512	66	TORPEDO/BULLET	c	120	0.0467	5.161	0.9209	37.601	413.1	2743	82	120	0.047	5.1797	0.9202	37.485	416.29	2776	82
513	66	TORPEDO/BULLET	c	120	0.046	5.06	0.9167	35.827	412.2	2725	82	120	0.046	5.0978	0.9256	35.678	387.51	2811	82
514	67	TORPEDO/BULLET	D	120	0.0524	4.887	0.7772	73.63	421.9	2760	82	120	0.052	4.8841	0.7777	73.903	419.42	2776	81
515	67	TORPEDO/BULLET	D	120	0.0456	5.049	0.9227	36.803	414.8	2773	83	120	0.046	5.0489	0.9219	36.745	412.36	2777	82
516	67	TORPEDO/BULLET	U	120	0.0524	4.957	0.7883	72.364	430.6	2748	81	120	0.053	4.9501	0.7853	72.705	436.18	2912	83
517	67	TORPEDO/BULLET	c	120	0.0529	4.952	0.7801	73.161	395.5	2763	82	120							
518	67	TORPEDO/BULLET	c	120	0.052	4.889	0.7835	72.185	399	2774	82	120	0.052	4.8888	0.7822	72.391	393.19	2810	81
519	67	TORPEDO/BULLET	c	120	0.0523	4.947	0.7882	71.717	405.6	2753	82	120							
520	68	TORPEDO/BULLET	U	120	0.052	4.9	0.7853	72.93	473.7	5302	82	120	0.052	4.9336	0.7843	72.821	489.24	5507	83
521	68	TORPEDO/BULLET	U	120	0.0522	4.89	0.7807	73.139	488.3	5187	81	120	0.053	4.9308	0.7814	73.013	502.43	5465	83
522	68	TORPEDO/BULLET	D	120	0.0521	4.917	0.7865	72.5	465	5264	83	120	0.052	4.9273	0.785	72.684	479.65	5203	82
523	68	TORPEDO/BULLET	c	120	0.0531	5.017	0.7874	71.898	479.7	5315	82	120	0.053	5.0449	0.7872	71.867	471.44	5441	82
524	68	TORPEDO/BULLET	c	120	0.0529	4.947	0.7793	72.912	459.2	5310	82	120							
525	68	TORPEDO/BULLET	c	120	0.053	4.963	0.7803	73.896	467.4	5166	81	120	0.053	5.0054	0.7813	73.884	470.61	5282	81
532	70	TORPEDO/BULLET	U	120	0.0388	4.616	0.9914	5.062	312.2	2692	92	120	0.039	4.6236	0.9878	4.9619	345.46	2894	94
533	70	TORPEDO/BULLET	U	120	0.0368	4.374	0.9905	4.936	305.8	2697	92	120	0.046	4.4313	0.8076	64.245	322.01	2755	92
534	70	TORPEDO/BULLET	D	120	0.0396	4.72	0.9933	4.524	312.6	2660	92	120	0.04	4.6918	0.9876	4.9226	328.29	2710	92
535	70	TORPEDO/BULLET	c	120	0.0376	4.456	0.9876	5.158	301.8	2725	93	120	0.038	4.4837	0.9869	5.242	313.53	2751	93
536	70	TORPEDO/BULLET	c	120	0.0383	4.529	0.9854	5.705	304.8	2702	92	120	0.048	4.604	0.8061	64.697	317.9	2760	92
537	70	TORPEDO/BULLET	c	120	0.0391	4.636	0.9881	4.481	300.3	2750	93	120	0.039	4.6374	0.9876	4.8635	313.75	2772	93
538	71	TORPEDO/BULLET	D	120	0.0592	3.987	0.5612	131.72	304	2963	82	120	0.059	3.9938	0.5641	129.43	306.63	3031	82
539	71	TORPEDO/BULLET	U	120	0.0586	3.959	0.563	129.94	306.3	2964	82	120	0.058	3.9884	0.5693	126.59	316.79	3212	85
540	71	TORPEDO/BULLET	D	120	0.0583	3.959	0.5659	127.44	302.7	2946	82	120	0.058	3.972	0.5706	125.77	295.05	3008	82
541	71	TORPEDO/BULLET	c	120	0.059	3.958	0.559	132.96	294.5	2955	82	120	0.058	3.9657	0.5698	128.61	286.68	3076	82
542	71	TORPEDO/BULLET	c	120	0.0598	4.033	0.562	130.67	310.6	2946	83	120	0.059	4.048	0.5703	127.52	308	3012	83
543	71	TORPEDO/BULLET	c	120	0.0595	4.012	0.5619	131.06	299.7	2939	82	120	0.059	4.0146	0.5694	127.76	294.27	3033	83
544	72	TORPEDO/BULLET	D	120	0.0395	3.803	0.8023	49.113	338.7	5250	83	120	0.039	3.7845	0.801	48.965	339.68	5351	83
545	72	TORPEDO/BULLET	U	120	0.0389	3.699	0.7924	49.642	334.5	5265	83	120	0.039	3.6663	0.7915	49.481	339	5289	83
546	72	TORPEDO/BULLET	D	120	0.0436	4.292	0.8203	47.283	367	4902	82	120	0.043	4.2438	0.8152	47.591	364.76	4995	82
547	73	TORPEDO/BULLET	U	120	0.0414	4.061	0.8174	47.509	344.3	5213	82	120	0.041	4.0409	0.8186	47.377	353.65	5311	82
548	73	TORPEDO/BULLET	D	120	0.0435	4.268	0.8176	46.703	367.5	4866	82	120	0.043	4.2681	0.8228	46.207	360.76	4874	82
549	73	TORPEDO/BULLET	U	120	0.0443	4.314	0.8115	48.954	341.7	4955	82	120	0.044	4.2861	0.8119	48.697	367.49	5258	84
550	74	TORPEDO/BULLET	D	120	0.0439	4.321	0.8202	48.063	286.9	2796	82	120	0.044	4.2756	0.819	48.065	292.35	2812	82
551	74	TORPEDO/BULLET	U	120	0.0445	4.347	0.814	48.823	288.2	2743	81	120	0.044	4.3204	0.8166	48.52	291.25	2953	84
552	74	TORPEDO/BULLET	D	120	0.0438	4.289	0.816	48.537	281.6	2751	81	120	0.043	4.2523	0.8159	48.551	280.19	2733	81
553	75	TORPEDO/BULLET	U	120	0.0449	4.447	0.8254	48.155	329.2	2744	81	120	0.044	4.3865	0.8227	48.071	352.15	2912	83
554	75	TORPEDO/BULLET	D	120	0.0447	4.399	0.8201	47.011	329.1	2722	81	120	0.044	4.3612	0.8204	47.008	336.51	2747	81
555	75	TORPEDO/BULLET	U	120	0.0443	4.389	0.8256	47.053	317.1	2734	81	120	0.044	4.407	0.8297	46.179	342.74	2896	83
556	76	SPOTIGHT/REFLECTOR	D	120	0.0885	9.602	0.9041	41.252	675	2644	91	120	0.08	9.62	0.9041	41.12	691.73	2709	91
557	76	SPOTLIGHT/REFLECTOR	U	120	0.0862	9.363	0.9052	40.945	671.8	2680	92	120	0.085	9.2369	0.906	40.595	682.66	2710	92
558	76	SPOTLIGHT/REFLECTOR	D	120	0.087	9.347	0.8953	43.544	690.7	2696	92	120	0.086	9.2741	0.8962	43.41	75.25	2791	92

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
Lamp \#	Model \#	Lamp Type	Test Fixture	Initial Volts	Initial Amps	Initial Power	Initial pf	$\begin{gathered} \hline \text { Initial } \\ \text { THD } \end{gathered}$	Initial Lumens	Initial CCT	Initial CRI	Final Volts	Final Amps	Final Power	Final pf	$\begin{aligned} & \hline \text { Final } \\ & \text { THD } \end{aligned}$	Final Lumens	$\begin{gathered} \hline \text { Final } \\ \mathrm{CCT} \end{gathered}$	Final CRI
559	76	SPOTLIGHT/REFLECTOR	R	120	0.0864	9.401	0.9067	40.878	670.2	2662	92	120	0.085	9.2617	0.9069	40.472	692.75	2729	92
560	76	SPOTLIGHT/REFLECTOR	R	120	0.0833	9.011	0.9015	41.123	656.5	2665	92	120	0.082	8.8782	0.9025	40.812	660.09	2692	91
561	76	SPOTLIGHT/REFLECTOR	R	120	0.0862	9.354	0.9043	40.958	669.1	2652	92	120	0.085	9.2083	0.9053	40.426	674.26	2670	91
562	77	SPOTLIGHT/REFLECTOR	U	120	0.08	9.494	0.989	7.341	729.7	2745	83	120	0.08	9.5887	0.9928	8.195	762.29	2760	83
563	77	SPOTLIGHT/REFLECTOR	D	120	0.0767	9.078	0.9863	8.595	697.2	2747	83	120	0.078	9.211	0.9883	8.9059	720.97	2754	83
564	77	SPOTLIGHT/REFLECTOR	U	120	0.0777	9.284	0.9957	7.644	709.7	2757	82	120	0.078	9.2559	0.9905	7.3271	724.19	2789	82
565	77	SPOTLIGHT/REFLECTOR	R	120	0.0774	9.206	0.9912	7.233	702.9	2742	83	120	0.078	9.31	0.9927	7.6236	732.44	2758	83
566	77	SPOTLIGHT/REFLECTOR	R	120	0.0769	9.119	0.9882	8.499	705.6	2750	83	120	0.077	9.188	0.9934	8.355	732.74	2768	83
567	77	SPOTLIGHT/REFLECTOR	R	120	0.0757	9	0.9908	8.462	696.8	2752	81	120	0.077	9.1196	0.9927	8.4184	725.9	2774	83
568	78	SPOTLIGHT/REFLECTOR	D	120	0.0779	9.229	0.9873	7.168	690.8	2817	82	120	0.078	9.299	0.9882	7.0345	673.35	2879	82
569	78	SPOTLIGHT/REFLECTOR	U	120	0.0778	9.243	0.99	7.178	694.1	2762	81	120	0.078	9.269	0.9884	7.0316	692.34	2922	83
570	78	SPOTLIGHT/REFLECTOR	D	120	0.0785	9.258	0.9828	6.988	683.1	2808	81	120	0.078	9.304	0.9887	6.8451	665.33	2891	82
571	78	SPOTLIGHT/REFLECTOR	R	120	0.0775	9.178	0.9869	7.147	695.9	2815	82	120							
572	78	SPOTLIGHT/REFLECTOR	R	120	0.0783	9.254	0.9849	7.256	689.7	2795	82	120	0.082	9.692	0.989	6.9148	646.89	2909	82
573	78	SPOTLIGHT/REFLECTOR	R	120	0.0771	9.156	0.9896	7.324	685.5	2752	81	120	0.079	9.3652	0.9891	6.9743	639.84	2872	82
574	79	SPOTLIGHT/REFLECTOR	U	120	0.086	9.772	0.9469	32.903	748.3	2681	81	120	0.086	9.7765	0.9432	32.996	731.98	2729	81
575	79	SPOTLIGHT/REFLECTOR	D	120	0.0856	9.684	0.9428	33.1	739.1	2731	82	120	0.086	9.6786	0.9416	33.254	729.38	2759	82
576	79	SPOTLIGHT/REFLECTOR	U	120	0.086	9.74	0.9438	32.357	754.6	2726	82	120	0.086	9.7648	0.9455	32.422	768.53	2760	82
577	79	SPOTLIGHT/REFLECTOR	R	120	0.0852	9.711	0.9498	31.057	763	2743	82	120	0.085	9.6966	0.9474	31.168	762.08	2786	82
578	79	SPOTLIGHT/REFLECTOR	R	120	0.0867	9.81	0.9429	32.671	742	2714	82	120	0.087	9.8115	0.9441	32.748	756.71	2765	82
579	79	SPOTLIGHT/REFLECTOR	R	120	0.0859	9.761	0.9469	32.577	774.1	2743	82	120	0.086	9.7388	0.9438	32.747	780.6	2783	82
580	80	SPOTLIGHT/REFLECTOR	U	120	0.0864	10.316	0.995	7.776	735.4	2775	83	120	0.086	10.226	0.9879	9.0923	758.32	2784	82
581	80	SPOTLIGHT/REFLECTOR	D	120	0.0869	10.38	0.9954	7.603	722.8	2743	82	120	0.088	10.388	0.9887	8.0303	766.17	2779	83
582	80	SPOTLIGHT/REFLECTOR	U	120	0.0864	10.316	0.995	7.576	727.4	2752	82	120	0.088	10.453	0.9892	8.3847	763.13	2777	82
583	80	SPOTLIGHT/REFLECTOR	R	120	0.0836	9.947	0.9915	7.776	700.2	2744	82	120	0.084	10.053	0.9926	8.1797	711.54	2766	82
584	80	SPOTLIGHT/REFLECTOR	R	120	0.0876	10.409	0.9902	8.024	733.5	2793	82								
585	80	SPOTLIGHT/REFLECTOR	R	120	0.0858	10.206	0.9913	8.978	715	2783	82	120	0.086	10.24	0.9886	8.9363	744.42	2777	82
586	81	SPOTLIGHT/REFLECTOR	D	120	0.0859	10.226	0.992	10.295	755.9	2613	92	120	0.086	10.216	0.9893	10.548	777.7	2621	92
587	81	SPOTLIGHT/REFLECTOR	U	120	0.0865	10.252	0.9877	10.243	765.1	2629	93	120	0.086	10.257	0.9894	10.247	789.31	2648	93
588	81	SPOTLIGHT/REFLECTOR	D	120	0.086	10.265	0.9947	9.632	782.7	2654	91	120	0.11	10.874	0.8201	65.705	802.15	2663	91
589	81	SPOTLIGHT/REFLECTOR	R	120	0.087	10.33	0.9894	10.59	779.2	2642	92	120	0.087	10.361	0.9897	10.312	798.83	2667	92
590	81	SPOTLIGHT/REFLECTOR	R	120	0.0822	9.776	0.9911	9.912	646.4	2620	93	120	0.082	9.7262	0.9885	10.114	670.01	2651	93
591	81	SPOTLIGHT/REFLECTOR	R	120	0.0821	9.715	0.9861	10.461	685.5	2649	92	120	0.082	9.7244	0.9882	10.449	693.83	2693	92
592	82	SPOTLIGHT/REFLECTOR	U	120	0.0979	11.654	0.992	7.938	763.9	2704	92	120	0.098	11.716	0.9919	8.4308	793.54	2741	92
593	82	SPOTLIGHT/REFLECTOR	D	120	0.0986	11.699	0.9888	9.912	778.1	2705	91	120	0.099	11.832	0.9935	9.2724	805.36	2733	91
594	82	SPOTLIGHT/REFLECTOR	U	120	0.0997	11.919	0.9962	11.921	745.8	2688	92	120	0.101	11.989	0.9867	12.461	763.48	2723	92
595	82	SPOTLIGHT/REFLECTOR	R	120	0.0996	11.805	0.9877	11.98	758.3	2718	92	120	0.099	11.765	0.9872	12.123	765.11	2733	92
596	82	SPOTLIGHT/REFLECTOR	R	120	0.1015	12.01	0.986	11.704	777	2717	91	120	0.102	12.227	0.9942	9.0794	802.22	2746	91
597	82	SPOTLIGHT/REFLECTOR	R	120	0.0966	11.473	0.9897	8.919	752.4	2710	92	120	0.096	11.439	0.9919	8.3187	763.32	2734	92
598	83	SPOTLIGHT/REFLECTOR	D	120	0.0872	10.357	0.9898	7.723	714.6	2772	83	120	0.087	10.359	0.9894	7.6451	747.72	2808	83
599	83	SPOTLIGHT/REFLECTOR	U	120	0.0844	10.096	0.9968	7.889	730.9	2775	82	120	0.085	10.174	0.9942	7.6153	769.78	2778	82
600	83	SPOTLIGHT/REFLECTOR	D	120	0.0857	10.238	0.9955	7.469	722	2784	83	120	0.086	10.293	0.9945	7.482	749.31	2800	83
601	83	SPOTLIGHT/REFLECTOR	R	120	0.0846	10.064	0.9913	8.001	707.9	2760	83	120	0.084	10.07	0.9934	8.1091	736.85	2761	82
602	83	SPOTLIGHT/REFLECTOR	R	120	0.0867	10.364	0.9962	8.039	738.1	2761	83	120	0.086	10.297	0.9934	7.8209	745.76	2765	82
603	83	SPOTLIGHT/REFLECTOR	R	120	0.0843	9.992	0.9877	7.923	703.8	2775	82	120	0.084	9.9767	0.9875	7.981	714.81	2781	82
616	86	SPOTLIGHT/REFLECTOR	D	120	0.1107	12.601	0.9486	28.588	1170.4	5132	83	120	0.111	12.665	0.9493	28.188	1165.3	5194	82
617	86	SPOTLIGHT/REFLECTOR	U	120	0.1154	13.138	0.9487	29.654	1214.1	5069	82	120	0.117	13.332	0.9474	29.494	1203.2	5194	82
618	86	SPOTLIGHT/REFLECTOR	D	120	0.1115	12.601	0.9418	28.686	1165.7	5066	82	120	0.112	12.719	0.9481	28.634	1157.1	5168	82
619	86	SPOTLIGHT/REFLECTOR	R	120	0.1154	13.062	0.9432	29.179	1215.1	5121	82	120							
620	86	SPOTLIGHT/REFLECTOR	R	120	0.1232	14.014	0.9479	29.562	1284	5028	82	120	0.124	14.154	0.949	29.359	1289	5143	83
621	86	SPOTLIGHT/REFLECTOR	R	120	0.1234	14.016	0.9465	29.708	1250	5022	83	120	0.125	14.196	0.9488	29.43	1278.7	5122	82
622	87	SPOTLIGHT/REFLECTOR	U	120	0.132	15.769	0.9955	6.676	1028	2725	93	120	0.132	15.719	0.9938	6.8469	1065	2732	93
623	87	SPOTLIGHT/REFLECTOR	D	120	0.1313	15.657	0.9937	6.644	1046	2723	93	120	0.13	15.596	0.9961	6.7732	1055.4	2730	93
624	87	SPOTLIGHT/REFLECTOR	U	120	0.1294	15.496	0.9979	6.504	1015	2738	93	120	0.13	15.545	0.9937	6.4982	1044.5	2758	93
625	87	SPOTLIGHT/REFLECTOR	R	120	0.131	15.68	0.997	6.788	1013	2740	93	120	0.133	15.8	0.9935	6.9021	1046.2	2748	93
626	87	SPOTLIGHT/REFLECTOR	R	120	0.1305	15.572	0.9944	6.898	1020	2705	93	120	0.13	15.517	0.9932	7.1153	1059.4	2723	93
627	87	SPOTLIGHT/REFLECTOR	R	120	0.1282	15.333	0.9967	6.569	1011	2724	93	120	0.129	15.407	0.9933	6.9449	1048.5	2725	93
634	89	SPOTLIGHT/REFLECTOR	D	120	0.1517	16.549	0.9091	42.911	925.6	3152	93	120	0.15	16.438	0.913	41.353	896.58	3239	93
635	89	SPOTLIGHT/REFLECTOR	U	120	0.1514	16.566	0.9118	41.196	1043.3	2982	92	120	0.15	16.435	0.9136	40.998	1042	3034	92
636	89	SPOTLIGHT/REFLECTOR	D	120	0.1499	16.425	0.9131	41.813	930.3	3070	92	120	0.15	16.377	0.9125	41.465	940.33	3113	92
637	89	SPOTLIGHT/REFLECTOR	R	120	0.1498	16.394	0.912	41.981	933.6	3117	93	120	0.149	16.354	0.9125	41.54	920.57	3223	93
638	89	SPOTLIGHT/REFLECTOR	R	120	0.1214	13.774	0.9455	26.953	1016.7	3100	95	120	0.12	13.588	0.9455	26.466	1047.9	3115	95
639	89	SPOTLIGHT/REFLECTOR	R	120	0.1343	14.924	0.926	33.329	1067.7	3108	95	120	0.135	14.972	0.9276	33.845	1114.1	3121	95
640	90	SPOTLIGHT/REFLECTOR	D	120	0.0558	6.522	0.974	10.726	567.5	2763	82	120	0.055	6.4814	0.9733	10.584	584.17	2778	82
641	90	SPOTLIGHT/REFLECTOR	U	120	0.057	6.666	0.9746	10.787	575.5	2763	82	120	0.057	6.6165	0.9743	10.505	599.19	2837	83
642	90	SPOTLIGHT/REFLECTOR	D	120	0.0579	6.793	0.9777	10.501	586.6	2754	82	120	0.058	6.7849	0.9755	10.218	590.31	2789	82
643	90	SPOTLIGHT/REFLECTOR	R	120	0.0597	7.001	0.9772	9.921	566.2	2762	82	120	0.06	6.9841	0.977	9.6908	584.82	2767	82
644	90	SPOTLIGHT/REFLECTOR	R	120	0.0601	7.071	0.9804	9.774	590	2455	82	120	0.06	7.0038	0.9774	9.5892	611.98	2760	82
645	90	SPOTLIGHT/REFLECTOR	R	120	0.0575	6.718	0.9736	10.726	585.5	2746	82	120	0.057	6.6693	0.9741	10.413	601.47	2760	82
646	91	SPOTLIGHT/REFLECTOR	U	120	0.0698	7.978	0.9525	28.431	520.1	2984	84	120	0.07	7.9963	0.9527	28.398	535.28	3134	85
647	91	SPOTLIGHT/REFLECTOR	D	120	0.0696	7.868	0.942	30.124	484.7	2972	84	120	0.07	7.9052	0.9467	30.31	497.01	3015	84
648	91	SPOTLIGHT/REFLECTOR	U	120	0.071	8.04	0.9437	30.305	500.9	2973	83	120	0.071	8.0857	0.9474	30.408	514.53	3126	85
649	91	SPOTLIGHT/REFLECTOR	R	120	0.0704	8.01	0.9482	30.656	509.3	2978	84	120	0.071	8.0085	0.946	30.782	513.53	3009	84
650	91	SPOTLIGHT/REFLECTOR	R	120	0.0695	7.931	0.951	29.45	503	2923	83	120	0.07	7.9226	0.949	29.487	507.54	2973	84

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
			${ }^{\text {Test }}$	nitial	nitial	Initial		Initial	Initial	Initial	niti	Final	Final	Final		Final	${ }^{\text {Final }}$	Final	Final
Lamp\#	Model \#	Lamp Type	Fixtur	Volts	Amps	Power	Initial pf	THD	umens	CCT	CRI	Volts	Amps	Power	Final pf	THD	Lumens	CC	CRI
651	91	SPOTLIGHT/REFLECTOR	R	120	0.0688	7.848	0.9506	28.799	491.8	2925	83	120	0.07	7.87	0.952	28.801	506.53	2985	84
658	93	SPOTIGHT/REFLECTOR	U	120	0.0643	7.089	0.9187	35.823	512.8	3011	84	120	0.064	7.0603	0.9192	35.941	518.8	305	84
659	93	SPOTLIGHT/REFLECTOR	D	120	0.0638	7.033	0.9186	35.338	514	3008	83	120	0.064	7.0504	0.9178	35.4	519.3	307	84
660	93	SPOTLIGHT/REFLECTOR	U	120	0.065	7.185	0.9212	35.814	526.9	2978	83	120	0.065	7.2088	0.9212	35.661	532	3054	83
661	93	SPOTLIGHT/REFLECTOR	R	120	0.0656	7.172	0.9111	38.297	516.3	2989	83	120	0.067	7.18	0.912	38.29	525.2	305	83
662	93	SPOTLIGHT/REFLECTOR	R	120	0.0653	7.136	0.9107	38.544	548.8	3008	83	120	0.065	7.13	0.911	38.48	547.9	3061	83
663	93	SPOTLIGHT/REFLECTOR	R	120	0.0647	7.111	0.9159	36.935	521.5	2996	83	120	0.065	7.0919	0.915	37.119	520.08	3068	83
664	94	SPOTLIGHT/REFLECTOR	D	120	0.0681	8.118	0.9934	9.51	469.3	3086	81	120	0.069	8.154	0.9892	8.605	449.28	3140	82
665	94	SPOTIGHT/REFLECTOR	U	120	0.0694	8.238	0.9892	9.118	472.5	3031	80	120	0.07	8.2649	0.9892	8.8059	467.3	308	81
666	94	SPOTLIGHT/REFLECTOR	D	120	0.0663	7.884	0.991	4.77	476.3	3044	81	120	0.066	7.9095	0.9934	3.8365	479.75	3093	81
667	94	SPOTIGHT/REFLECTOR	R	120	0.0627	7.457	0.9911	4.045	468.2	3049	81	120							
668	94	SPOTLIGHT/REFLECTOR	R	120	0.0697	8.306	0.9931	8.284	467.3	3097	81	120							
669	94	SPOTLIGHT/REFLECTOR	R	120	0.0688	8.146	0.9867	9.866	469.7	3042	80	120							
670	95	SPOTLIGHT/REFLECTOR	U	120	0.1019	11.416	0.9336	33.905	867.6	2998	82	120	0.102	11.44	0.9334	33.699	878.45	3038	82
671	95	SPOTLIGHT/REFLECTOR	D	120	0.0975	10.984	0.9388	31.581	799.4	2972	82	120	0.098	10.985	0.9377	31.364	820.83	3028	82
672	95	SPOTIGHT/REFLECTOR	U	120	0.1021	11.407	0.931	33.54	837.6	2978	82	120	0.103	11.508	0.9337	33.466	848.89	3028	82
673	95	SPOTLIGHT/REFLECTOR	R	120	0.0977	10.996	0.9379	31.934	785.3	2958	82	120	0.098	11.039	0.9365	31.843	816.11	3012	82
674	95	SPOTLIGHT/REFLECTOR	R	120	0.1002	11.233	0.9342	32.856	888.2	2964	82	120	0.1	11.262	0.9357	32.511	867.06	3020	82
675	95	SPOTLIGHT/REFLECTOR	R	120	0.1015	11.325	0.9298	34.914	843	2972	82								
676	96	SPOTLIGHT/REFLECTOR	D	120	0.0995	11.086	0.9285	33.018	828.5	2972	83	120	0.099	11.151	0.9342	33.266	822.77	3004	83
677	96	SPOTLIGHT/REFLECTOR	U	120	0.0995	11.108	0.9303	33.219	811	2953	82	120	0.099	11.142	0.9336	33.4	807.8	2993	82
678	96	SPOTLIGHT/REFLECTOR	D	120	0.0997	11.14	0.9311	33.839	826.6	2968	83	120	0.1	11.159	0.933	33.73	820.36	3001	82
679	96	SPOTIGHT/REFLECTOR	R	120	0.0984	11.068	0.9373	32.477	798	2971	83	120	0.098	11.053	0.9365	32.387	774.65	3054	84
680	96	SPOTLIGHT/REFLECTOR	R	120	0.0986	11.014	0.9309	33.834	800.1	2968	83	120	0.099	11.093	0.9317	33.966	804.78	3023	83
681	96	SPOTLIGHT/REFLECTOR	R	120	0.0974	10.913	0.9337	32.414	816.9	2996	83	120	0.097	10.939	0.9357	32.245	812.3	3062	83
682	97	SPOTLIGHT/REFLECTOR	U	120	0.1071	12.763	0.9931	7.402	755.4	3078	95	120	0.106	12.724	0.9956	6.7132	764.07	3118	95
683	97	SPOTLIGHT/REFLECTOR	D	120	0.1089	13.009	0.9955	6.949	786.8	3051	95	120	0.11	13.055	0.9922	7.6994	805.95	3082	95
684	97	SPOTLIGHT/REFLECTOR	U	120	0.1083	12.876	0.9908	7.218	728.4	3060	96	120	0.108	12.861	0.9921	7.5738	744.09	3099	96
685	97	SPOTLIGHT/REFLECTOR	R	120	0.1064	12.711	0.9955	6.651	783.7	3055	95	120	0.106	12.704	0.9954	7.3279	812.64	3107	95
686	97	SPOTIGHT/REFLECTOR	R	120	0.1154	13.806	0.997	5.406	802.2	3107	95	120	0.116	13.852	0.9965	5.5942	815.47	3143	94
687	97	SPOTLIGHT/REFLECTOR	R	120	0.1105	13.175	0.9936	5.726	785.2	3110	95								
688	98	SPOTLIGHT/REFLECTOR	D	120	0.1221	14	0.9555	30.296	816.5	2962	83	120	0.12	13.81	0.957	29.36	833.2	302	83
689	98	SPOTLIGHT/REFLECTOR	U	120	0.1224	14.004	0.9534	30.133	816.7	3001	83	120	0.122	14.014	0.9556	30.116	833.05	3061	84
690	98	SPOTLIGHT/REFLECTOR	D	120	0.1239	14.187	0.9542	31.078	771.8	3001	83	120	0.124	14.181	0.9533	31.15	793.39	3041	83
691	98	SPOTLIGHT/REFLECTOR	R	120	0.124	14.187	0.9534	30.288	816.5	2993	83	120	0.124	14.253	0.9548	30.603	826.91	3046	83
692	98	SPOTLIGHT/REFLECTOR	R	120	0.1235	14.148	0.9547	29.829	849.8	2995	83	120	0.123	14.161	0.957	29.634	857.9	3068	83
693	98	SPOTLIGHT/REFLECTOR	R	120	0.1226	14.096	0.9581	29.32	854	3013	84	120	0.123	14.108	0.9576	29.428	877.91	3063	84
694	99	SPOTIGHT/REFLECTOR	U	120	0.1351	14.802	0.913	35.813	1018.4	3047	84	120	0.135	14.867	0.921	35.948	1037.7	3034	83
695	99	SPOTLIGHT/REFLECTOR	D	120	0.1352	14.897	0.9182	36.526	1009.9	3036	84	120	0.135	14.88	0.9198	36.524	1052.9	3041	84
696	99	SPOTIGHT/REFLECTOR	U	120	0.1337	14.851	0.9256	33.569	1039.3	3016	83	120	0.133	14.814	0.925	35.455	1075.5	3015	83
697	99	SPOTLIGHT/REFLECTOR	R	120	0.1319	14.64	0.9249	35.947	985.2	3058	84	120	0.131	14.581	0.9251	34.801	1001.4	3015	83
698	99	SPOTIGHT/REFLECTOR	R	120	0.1345	14.851	0.9201	36.333	983.9	3050	84	120	0.135	14.883	0.9221	35.407	1000.1	3013	83
699	99	SPOTLIGHT/REFLECTOR	R	120	0.1379	15.276	0.9231	36.068	865.9	3081	84								
700	100	SPOTIGHT/REFLECTOR	D	120	0.1188	14.169	0.9939	7.531	870.4	3091	81	120	0.12	14.237	0.9901	8.6818	890.8	3131	81
701	100	SPOTLIGHT/REFLECTOR	U	120	0.1251	14.915	0.9935	7.123	956.7	3104	81	120	0.125	14.916	0.996	7.3021	969.47	3118	81
702	100	SPOTLIGHT/REFLECTOR	D	120	0.1206	14.325	0.9898	8.246	933.3	3098	82	120	0.122	14.444	0.9905	8.0882	944.04	3118	82
703	100	SPOTLIGHT/REFLECTOR	R	120	0.1227	14.655	0.9953	6.721	906.2	3031	82	120	0.124	14.729	0.9911	7.1428	873.72	3106	82
704	100	SPOTLIGHT/REFLECTOR	R	120	0.1224	14.586	0.9931	7.493	944.4	3073	81	120	0.123	14.601	0.9901	8.2143	919.2	3150	82
705	100	SPOTIGHT/REFLECTOR	R	120	0.1243	14.743	0.9884	7.166	921.2	3077	82	120	0.123	14.737	0.9952	7.1305	905.3	3126	82
706	101	SPOTLIGHT/REFLECTOR	U	120	0.1	11.848	0.9873	7.271	1022.2	3094	84	120	0.1	11.862	0.9896	7.1755	1041.5	3121	84
707	101	SPOTIGHT/REFLECTOR	D	120	0.1007	11.935	0.9877	7.251	1007	3103	84	120	0.1	11.902	0.9892	7.1513	1024.2	3126	84
708	101	SPOTIGHT/REFLECTOR	U	120	0.0991	11.783	0.9908	7.366	1008.9	3090	84	120	0.099	11.751	0.989	7.2513	1035	3120	84
709	101	SPOTIGHT/REFLECTOR	R	120	0.0999	11.84	0.9877	7.466	991.8	3107	84	120	0.1	11.808	0.9889	7.4128	1004.3	3117	84
710	101	SPOTLIGHT/REFLECTOR	R	120	0.1003	11.887	0.9876	7.203	1002.3	3091	84	120	0.1	11.855	0.9896	7.0601	1025.9	3135	84
711	101	SPOTLIGHT/REFLECTOR	R	120	0.097	11.487	0.9869	7.449	988.6	3079	84	120	0.097	11.486	0.9887	7.3524	992.3	3117	84
712	102	SPOTIGHT/REFLECTOR	D	120	0.1304	15.554	0.994	7.439	943.6	3106	93	120	0.13	15.457	0.993	7.6958	935.91	3164	93
713	102	SPOTLIGHT/REFLECTOR	U	120	0.136	16.244	0.9953	7.809	941.4	3076	93	120	0.136	16.172	0.992	8.0677	970.09	3169	93
714	102	SPOTIGHT/REFLECTOR	D	120	0.1255	15.001	0.9961	7.265	893.7	3080	94	120	0.127	15.179	0.9927	7.5551	930.64	3164	93
715	102	SPOTLIGHT/REFLECTOR	R	120	0.1311	15.669	0.996	7.01	930.1	3069	93	120	0.132	15.694	0.9932	6.8921	833.38	3201	93
716	102	SPOTLIGHT/REFLECTOR	R	120	0.1388	16.582	0.9956	6.421	933.3	3107	93	120							
717	102	SPOTIGHT/REFLECTOR	R	120	0.1379	16.461	0.9947	6.617	880.3	3079	93	120	0.14	16.558	0.9947	6.2651	917.88	3150	93
724	104	SPOTIGHT/REFLECTOR	D	120	0.134	13.672	0.8502	58.83	993.3	3102	85	120	0.135	13.725	0.8444	58.755	959.01	3108	85
725	104	SPOTIGHT/REFLECTOR	U	120	0.1329	13.592	0.8523	58.507	1001.6	3109	86	120	0.134	13.683	0.8505	58.264	969.47	3133	85
726	104	SPOTLIGHT/REFLECTOR	D	120	0.1342	13.68	0.8495	59.082	973.1	3095	86	120	0.135	13.75	0.8461	58.86	938.54	3126	85
727	104	SPOTIGHT/REFLECTOR	R	120	0.1323	13.461	0.8479	59.196	979.6	3089	85	120	0.133	13.541	0.8453	59.159	968.02	3139	85
728	104	SPOTLIGHT/REFLECTOR	R	120	0.1348	13.772	0.8514	58.805	1001.2	3092	85	120	0.135	13.73	0.8464	58.991	984.75	3130	85
729	104	SPOTLIGHT/REFLECTOR	R	120	0.1311	13.391	0.8512	59.149	979.6	3064	85	120	0.132	13.439	0.8462	58.931	953.04	3122	85
730	105	SPOTLIGHT/REFLECTOR	U	120	0.145	15.872	0.9122	42.437	1502	3126	82	120	0.145	15.841	0.9107	42.502	1537.1	3158	82
731	105	SPOTLIGHT/REFLECTOR	D	120	0.149	16.101	0.9005	43.74	1533.3	3097	82	120	0.149	16.207	0.9054	44.181	1565.3	3136	82
732	105	SPOTLIGHT/REFLECTOR	U	120	0.1461	15.957	0.9102	43.346	1482.3	3115	82	120	0.147	15.99	0.9073	43.4	1518.7	3153	82
733	105	SPOTLIGHT/REFLECTOR	R	120	0.1494	16.447	0.9174	40.851	1530.5	3125	82	120	0.15	16.496	0.9163	40.802	1520.9	3188	82
734	105	SPOTLIGHT/REFLECTOR	-	120	0.1484	16.138	0.9062	43.512	1487	3115	82	120	0.149	16.192	0.9072	43.66	1510.9	3142	82
735	105	SPOTLIGHT/REFLECTOR	R	120	0.1513	16.575	0.9129	41.898	1566	3104	82	120	0.151	16.594	0.9129	42.074	1514.1	3164	83
736	106	SPOTLIGHT/REFLECTOR	D	120	0.1477	16.106	0.9087	43.986	1622	5161	81	120	0.149	16.146	0.9058	44.086	1591.4	225	81

Test Units				Initial Photometric Testing Results								Final Photometric Testing Results							
			Test	Initial	Initial	Initial		Initial	Initial	Initial	Initial	Final	Final				Final	Final	Final
Lamp \#	Model \#	Type	Fixture	Volts	Amps	Power	Initial pf	THD	Lumens	CCT	CRI	Volts	Amps	Power	Final pf	тHD	men	CCT	CRI
737	106	SPOTLIGHT/REFLECTOR	U	120	0.1454	15.833	0.9074	43.036	1632.1	5147	81	120	0.145	15.844	0.9084	43	1592.1	5243	81
738	106	SPOTLIGHT/REFLECTOR	D	120	0.1474	16.084	0.9093	42.797	1649	5170	81	120	0.148	16.137	0.9093	42.943	1614.6	5269	81
739	106	SPOTLIGHT/REFLECTOR	R	120	0.1464	5.048	0.9135	42.746	1618	5163	81	120							
740	106	SPOTLIGHT/REFLECTOR	R	120	0.146	15.915	0.9084	42.076	1620.7	5219	81	120	0.146	15.969	0.9111	42.54	1594	5219	81
741	106	SPOTLIGHT/REFLECTOR	R	120	0.1477	16.105	0.9087	43.363	1662.5	5188	81	120	0.148	16.143	0.9077	43.625	1704.7	5201	81
742	107	SPOTLIGHT/REFLECTOR	U	120	0.1319	15.628	0.9874	7.285	1027	2996	82	120	0.149	15.74	0.8803	50.267	1012.5	3056	82
743	107	SPOTLIGHT/REFLECTOR	D	120	0.1294	15.419	0.993	6.415	1018.4	3025	82	120	0.13	15.498	0.9963	5.1185	987.6	3100	83
744	107	SPOTLIGHT/REFLECTOR	U	120	0.1291	15.404	0.9943	7.426	1037.4	2995	82	120	0.129	15.41	0.9931	7.46	921.1	3040	82
745	107	SPOTLIGHT/REFLECTOR	R	120	0.1306	15.508	0.9895	7.508	1021	3006	83	120	0.13	15.543	0.9927	7.6674	935.11	3139	83
746	107	SPOTLIGHT/REFLECTOR	R	120	0.1296	15.489	0.9959	5.891	1003	3010	82	120	0.129	15.406	0.9936	7.0095	904.1	3165	83
747	107	SPOTLIGHT/REFLECTOR	R	120	0.13	15.509	0.9942	7.232	1020	3004	82	120	0.13	15.57	0.995	6.1395	935.8	313	83
748	108	SPOTLIGHT/REFLECTOR	D	120	0.0669	6.956	0.8665	51.173	607.1	5049	85	120	0.067	7.0278	0.8691	50.695	634.29	5094	84
749	108	SPOTLIGHT/REFLECTOR		120	0.064	6.721	0.8751	47.981	605.5	5089	85	120	0.064	6.704	0.8758	47.56	633.4	5117	84
750	108	SPOTLIGHT/REFLECTOR	D	120	0.0668	6.998	0.873	49.35	615.1	5030	85	120	0.067	7.001	0.8726	49.204	638.28	5066	85
751	108	SPOTLIGHT/REFLECTOR	R	120	0.0665	6.995	0.8766	48.927	603.6	5037	85	120	0.068	7.03	0.876	48.91	620.85	5118	85
752	108	SPOTIGHT/REFLECTOR	R	120	0.0676	7.001	0.863	50.825	602.2	4991	84	120	0.0676	7.01	0.862	50.48	582.04	5057	84
753	108	SPOTLIGHT/REFLECTOR	R	120	0.0669	7.017	0.8741	49.036	605.1	5049	86	120	0.067	7.0321	0.876	48.91	583.03	5150	86
754	109	SPOTLIGHT/REFLECTOR		120	0.0705	7.626	0.9014	41.936	613.8	2695	81	120	0.07	7.6481	0.9043	41.772	632.5	2715	81
755	109	SPOTLIGHT/REFLECTOR		120	0.0704	7.618	0.9018	42.972	607.5	2719	82	120	0.07	7.6123	0.9011	42.839	584.04	2689	81
756	109	SPOTLIGHT/REFLECTOR	U	120	0.0705	7.657	0.9051	41.625	628.2	2703	82	120	0.07	7.642	0.907	41.477	654.63	2802	83
757	109	SPOTLIGHT/REFLECTOR	R	120	0.07	7.628	0.9081	41.229	627.7	2710	82	120	0.07	7.5812	0.9082	41.117	629.01	2747	82
758	109	SPOTLIGHT/REFLECTOR	R	120	0.0702	7.626	0.9053	41.54	629.9	2709	81	120	0.07	7.5912	0.9058	41.52	628.28	2743	82
759	109	SPOTLIGHT/REFLECTOR	R	120	0.07	7.6	0.9048	42.27	616.3	2712	82	120	0.07	7.6155	0.904	42.017	628.5	2745	81
760	110	SPOTLIGHT/REFLECTOR	D	120	0.0625	7.248	0.9664	11.817	528.1	2731	82	120	0.063	7.2651	0.9673	11.601	550.2	2765	82
761	110	SPOTLIGHT/REFLECTOR	U	120	0.0628	7.324	0.9719	10.351	527.9	2745	82	120	0.067	7.4011	0.9177	18.025	553.69	2871	83
762	110	SPOTLIGHT/REFLECTOR	D	120	0.062	7.2	0.9677	10.819	546	2744	82	120	0.062	7.2154	0.9697	10.655	558.92	2755	82
763	110	SPOTLIGHT/REFLECTOR	R	120	0.0627	7.248	0.9633	7.268	548.2	2768	83	120	0.062	7.2546	0.9692	11.033	555.2	2797	83
764	110	SPOTIGHT/REFLECTOR	R	120	0.0624	7.202	0.9618	7.199	535.8	2769	83	120	0.062	7.1882	0.9663	11.451	550.27	2777	83
765	110	SPOTLIGHT/REFLECTOR	R	120	0.0623	7.241	0.9686	11.409	539.7	2739	82	120	0.067	7.2817	0.91	18.947	545.09	2767	82
766	111	SPOTLIGHT/REFLECTOR	D	120	0.0592	7.025	0.9889	5.591	451	2730	91	120	0.0592	7.04	0.994	5.62	461.04	2753	91
767	111	SPOTLIGHT/REFLECTOR	U	120	0.0584	6.941	0.9904	5.003	431	2716	92	120	0.059	7.0103	0.985	7.0694	446.9	2729	91
768	111	SPOTLGHT/REFLECTOR	-	120	0.0669	7.929	0.9877	8.956	475.8	2689	92	120	0.068	7.95	0.992	8.98	489.01	2717	92
769	111	SPOTLIGHT/REFLECTOR	R	120	0.0654	7.748	0.9873	9.422	481.6	2726	92	120	0.065	7.6431	0.9866	9.0747	480.49	2746	92
770	111	SPOTLIGHT/REFLECTOR	R	120	0.0644	7.476	0.9674	9.18	466.5	2709	92	120	0.064	7.4222	0.97	9.117	480.7	2729	92
771	111	SPOTIGHT/REFLECTOR	R	120	0.0633	7.478	0.9845	9.382	477.6	2683	91	120	0.063	7.4164	0.9818	9.4789	491.34	2728	92
1001	201	TRIM KIT	R	120	0.089	10.5	0.983	18.57	765	3087	84	120	0.089	10.54	0.983	18.55	783	3051	83
1002	201	TRIM KIT	R	120	0.09	10.6	0.983	18.59	763	3078	84	120	0.09	10.56	0.983	18.53	781	3052	83
1003	201	TRIM KIT	R	120	0.088	10.4	0.9829	18.61	552	3000	93	120	0.088	10.4	0.9829	18.61	567	2974	93
1004	202	TRIM KIT	R	120	0.138	16.4	0.985	17.741	864	3023	94	120	0.138	16.28	0.984	17.92	883	2998	93
1005	202	TRIM KIT	R	120	0.138	16.4	0.9844	17.76	893	3058	94	120	0.138	16.35	0.984	17.78	919	3033	93
1006	202	TRIM KIT	R	120	0.139	16.4	0.9842	17.84	899	3052	94	120	0.139	16.45	0.984	17.78	923	3023	93
1007	203	TRIM KIT	R	120	0.086	10.2	0.9879	15.52	642	3020	93	120	0.086	10.18	0.988	15.45	653	3009	93
1008	203	TRIM KIT	R	120	0.085	10	0.9869	15.9	626	3051	93	120	0.085	10.03	0.987	16.06	650	3042	93
1009	203	TRIM KIT	R	120	0.084	10	0.9867	16.08	614	3020	93	120	0.084	9.96	0.987	15.87	637	3011	93
1010	204	TRIM KIT	R	120	0.089	10.5	0.9803	10.51	589	2723	93	120	0.089	10.49	0.981	10.17	601	2761	92
1011	204	TRIM KIT	R	120	0.089	10.5	0.9807	10.05	585	2735	93	120	0.089	10.51	0.981	9.78	599	2764	93
1012	204	TRIM KIT	R	120	0.09	10.5	0.9804	9.91	593	2697	93	120	0.089	10.52	0.981	9.46	604	2730	92
1013	205	TRIM KIT	R	120	0.081	9.6	0.9814	6.18	699.9	2783	92	120	0.081	9.59	0.982	6.11	710	2795	92
1014	205	TRIM KIT	R	120	0.081	9.6	0.983	5.75	699.6	2797	92	120	0.081	9.58	0.983	5.7	707	2805	92
1015	205	TRIM KIT	R	120	0.091	10.7	0.9798	11.15	627	2733	93	120	0.09	10.64	0.98	11.06	665	2765	92
1016	206	TRIM KIT	R	120	0.081	9.5	0.9807	10.27	523	2743	93	120	0.081	9.55	0.98	10.32	531	2740	92
1017	206	TRIM KIT	R	120	0.079	9.3	0.9809	9.33	479	2841	94	120	0.079	9.32	0.982	9.08	478	2855	94
1018	206	TRIM KIT	,	120	0.078	9.4	0.9952	9.7	502	2736	91	120	0.079	9.38	0.994	3.63	506	2741	91
1019	207	TRIM KIT	R	120	0.179	21.3	0.9938	7.4	1314	2767	91	120	0.18	21.5	0.995	6.82	1318	2764	91
1020	207	TRIM KIT	R	120	0.178	21.3	0.9947	6.73	1308	2777	92	120	0.181	21.64	0.996	5.74	1319	2774	92
1021	207	TRIM KIT	R	120	0.177	21.1	0.9943	6.76	1304	2782	92	120	0.178	21.23	0.995	6.65	1299	2781	92
1022	208	TRIM KIT	R	120	0.108	11.7	0.9066	36.19	659	2687	92	120	0.107	11.66	0.908	35.54	673	2712	92
1023	208	TRIM KIT	R	120	0.109	12	0.9081	35.68	679	2694	92	120	0.109	11.86	0.908	35.86	674	2708	91
1024	208	TRIM KIT	R	120	0.110	12	0.9061	36.91	666	2692	92	120	0.109	11.93	0.908	36.33	651	2731	92
1025	209	TRIM KIT	R	120	0.144	16	0.929	34.38	1048	2682	92	120	0.142	15.9	0.931	33.63	1074	2682	92
1026	209	TRIM KIT	R	120	0.147	16.4	0.9285	34.34	1039	2671	92	120	0.145	16.23	0.93	33.93	1065	2667	92
1027	209	TRIM KIT	R	120	0.146	16.3	0.9272	34.47	1055	2678	92	120	0.145	16.19	0.928	34.35	1075	2673	92
1028	210	TRIM KIT	R	120	0.088	9.6	0.9056	39.1	629	2755	93	120	0.088	9.54	0.905	38.98	622	2784	93
1029	210	TRIM KIT	R	120	0.087	9.5	0.9073	38.79	622	2747	93	120	0.087	9.45	0.908	38.61	613	2766	93
1030	210	TRIM KIT	R	120	0.087	9.5	0.9069	38.36	619	2763	93	120	0.087	9.44	0.908	38.18	617	2784	93
1031	211	TRIM KIT	R	120	0.071	7.7	0.9083	33.7	507	2722	93	120	0.071	7.77	0.91	33.63	508	2758	93
1032	211	TRIM KIT	R	120	0.071	7.8	0.9096	33.94	524	2730	93	120	0.071	7.78	0.911	33.9	519	2771	93
1033	211	TRIM KIT	R	120	0.072	7.9	0.9095	33.78	527	2740	92	120	0.072	7.89	0.911	33.7	525	2773	92
1034	212	TRIM KIT	R	120	0.09	10.5	0.9674	17.33	725	2658	92	120	0.09	10.5	0.968	17.12	752	2671	92
1035	212	TRIM KIT	R	120	0.089	10.4	0.973	15.06	691	2641	91	120	0.089	10.4	0.974	14.7	726	2648	91
1036	212	TRIM KIT	R	120	0.088	10.3	0.9704	16.34	696	2673	91	120	0.089	10.33	0.971	15.99	719	2680	91
1037	213	TRIM KIT	R	120	0.079	9.1	0.9578	18.58	601	2675	91	120	0.079	9.14	0.96	18.16	630	2686	91
1038	213	TRIM KIT	,	120	0.08	9.2	0.9618	18.17	605	2699	92	120	0.08	9.26	0.968	18.56	632	2704	92
1039	213	TRIM KIT	R	120	0.08	9.2	0.9601	19.69	602	2683	92	120	0.08	9.24	0.963	18.74	630	2691	92

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	Pre-Fail Time	$\begin{aligned} & \hline \text { Pre-Fail } \\ & \text { Mode } \end{aligned}$	Pre-Fail Only?	Zombie?	Lumen Maintenance	Color Shift	Initial Efficacy	Final Efficacy	Efficacy Change
1	1	A-LAMP	U	3938:34				no	no	97.1\%	27	72.25	70.88	-1.90\%
2	1	A-LAMP	D	4290:03				no	no	104.3\%	-14	74.13	77.11	4.01\%
3	1	A-LAMP	U	3938:34				no	no	105.9\%	17	73.73	77.15	4.64\%
4	1	A-LAMP	C	4103:22				no	no	96.6\%	29	69.36	67.06	-3.32\%
5	1	A-LAMP	C	4103:22				no	no	97.5\%	46	70.00	68.91	-1.55\%
6	1	A-LAMP	C	4103:22				no	no	99.4\%	49	70.05	69.69	-0.52\%
7	1	A-LAMP	R	3845:44				no	no	99.2\%	46	71.72	71.94	0.31\%
8	1	A-LAMP	R	3845:44				no	no	99.3\%	18	70.80	70.54	-0.36\%
9	1	A-LAMP	R	3845:44				no	no	100.7\%	48	73.25	74.33	1.47\%
10	2	A-LAMP	D	4534:51				no	no	100.2\%	-20	68.44	69.20	1.12\%
11	2	A-LAMP	U	4414:26				no	no	97.6\%	33	66.67	65.63	-1.56\%
12	2	A-LAMP	D	4534:51		3206:47	<70\% L.O.	yes	no	68.4\%	22	69.90	44.65	-36.12\%
13	2	A-LAMP	C	4103:22				no	no	84.0\%	51	66.92	52.68	-21.29\%
14	2	A-LAMP	C	4103:22				no	no	103.7\%	27	65.54	68.25	4.14\%
15	2	A-LAMP	C	4103:22				no	no	98.0\%	30	70.82	69.79	-1.45\%
16	2	A-LAMP	R	3845:44				no	no	102.2\%	85	66.71	68.50	2.67\%
17	2	A-LAMP	R	3845:44				no	no	103.4\%	39	69.65	72.48	4.07\%
18	2	A-LAMP	R	3845:44				no	no	98.9\%	78	68.48	68.39	-0.14\%
19	3	A-LAMP	U	4368:55				no	no	99.6\%	-17	76.45	75.99	-0.61\%
20	3	A-LAMP	D	4290:03				no	no	101.4\%	-41	76.32	77.19	1.14\%
21	3	A-LAMP	U	4368:55				no	no	102.9\%	11	77.53	79.79	2.91\%
22	3	A-LAMP	C	4103:22				no	no	101.5\%	48	75.09	75.79	0.93\%
23	3	A-LAMP	C	4103:22				no	no	100.3\%	46	75.40	75.47	0.09\%
24	3	A-LAMP	C	4103:22				no	no	102.5\%	35	76.42	78.10	2.21\%
25	3	A-LAMP	R	3938:34				no	no	101.4\%	36	76.68	77.52	1.10\%
26	3	A-LAMP	R	3938:34				no	no	102.9\%	27	75.52	77.89	3.13\%
27	3	A-LAMP	R	3938:34				no	no	100.6\%	33	75.53	72.14	-4.48\%
28	4	A-LAMP	D	4290:03				no	no	92.3\%	66	89.81	83.84	-6.64\%
29	4	A-LAMP	U	4368:55				no	no	99.2\%	354	85.07	85.52	0.53\%
30	4	A-LAMP	D	4290:03				no	no	96.2\%	21	86.27	84.00	-2.64\%
31	4	A-LAMP	C	4103:22				no	no	97.6\%	59	79.11	77.48	-2.06\%
32	4	A-LAMP	C	4103:22				no	no	97.2\%	75	84.53	82.63	-2.24\%
33	4	A-LAMP	C	4103:22				no	no	100.9\%	69	86.74	87.32	0.67\%
34	4	A-LAMP	R	3845:44				no	no	95.8\%	120	88.20	84.92	-3.72\%
35	4	A-LAMP	R	3845:44				no	no	101.5\%	136	86.10	88.36	2.63\%
36	4	A-LAMP	R	3845:44				no	no	97.7\%	164	86.91	85.31	-1.84\%
37	5	A-LAMP	U	4368:55				no	no	103.0\%	58	76.09	78.47	3.13\%
38	5	A-LAMP	D	4290:03				no	no	103.4\%	10	75.54	78.57	4.01\%
39	5	A-LAMP	U	4368:55				no	no	104.1\%	126	77.35	80.62	4.22\%
40	5	A-LAMP	C	4222:32				no	no	100.2\%	59	75.99	76.41	0.55\%
41	5	A-LAMP	C	4222:32				no	no	101.0\%	38	76.10	77.22	1.46\%
42	5	A-LAMP	C	4222:32		center contact broke		no	no	0.0\%		77.89	\#DIV/0!	\#DIV/0!
43	5	A-LAMP	R	3845:44				no	no	103.5\%	45	73.54	76.54	4.08\%
44	5	A-LAMP	R	3845:44				no	no	100.9\%	9	75.25	76.54	1.71\%
45	5	A-LAMP	R	3845:44				no	no	101.4\%	38	74.98	76.17	1.59\%
46	6	A-LAMP	D	4534:51		2992:51	CYCLING	yes	no	102.9\%	37	59.64	61.77	3.58\%
47	6	A-LAMP	U	4368:55				no	no	104.5\%	218	58.14	61.42	5.65\%
48	6	A-LAMP	D	4534:51				no	no	99.3\%	66	61.10	60.46	-1.04\%
49	6	A-LAMP	C	676:58	676:58			no	no	0.0\%		56.50	\#DIV/0!	\#DIV/0!
50	6	A-LAMP	C	4554:56				no	no	97.3\%	83	59.09	57.57	-2.57\%
51	6	A-LAMP	C	78:00	78:00			no	yes	0.0\%		60.72	\#DIV/0!	\#DIV/0!
52	6	A-LAMP	R	3938:34				no	no	98.2\%	92	58.19	56.58	-2.76\%
53	6	A-LAMP	R	3938:34				no	no	99.3\%	75	58.71	58.41	-0.51\%
54	6	A-LAMP	R	3938:34				no	no	96.3\%	117	59.48	57.55	-3.24\%
64	8	A-LAMP	D	4290:03				no	no	102.9\%	22	79.70	82.32	3.29\%
65	8	A-LAMP	U	4057:07				no	no	101.8\%	222	79.13	81.06	2.44\%
66	8	A-LAMP	D	4290:03				no	no	96.0\%	49	81.74	79.17	-3.14\%
67	8	A-LAMP	C	4008:18				no	no	99.0\%	59	81.97	81.46	-0.62\%
68	8	A-LAMP	C	4008:18				no	no	99.2\%	60	83.04	83.08	0.05\%
69	8	A-LAMP	C	4008:18				no	no	99.9\%	46	80.83	81.33	0.62\%
70	8	A-LAMP	R	3938:34				no	no	98.8\%	20	80.15	79.67	-0.61\%
71	8	A-LAMP	R	3938:34				no	no	101.5\%	73	81.45	81.55	0.13\%
72	8	A-LAMP	R	3938:34				no	no	101.2\%	60	80.96	82.67	2.11\%
73	9	A-LAMP	U	4414:26				no	no	98.5\%	60	74.75	75.71	1.28\%
74	9	A-LAMP	D	4225:25				no	no	93.1\%	72	76.32	74.53	-2.35\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	Pre-Fail Time	Pre-Fail Mode	Pre-Fail Only?	Zombie?	Lumen Maintenance	$\begin{aligned} & \hline \text { Color } \\ & \text { Shift } \\ & \hline \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
75	9	A-LAMP	U	3938:34				no	no	98.3\%	81	75.93	74.53	-1.84\%
76	9	A-LAMP	C	4079:12				no	no	95.4\%	88	76.26	73.89	-3.10\%
77	9	A-LAMP	C	4079:12				no	no	99.6\%	38	73.08	74.05	1.33\%
78	9	A-LAMP	C	4079:12				no	no	97.7\%	90	75.81	73.80	-2.64\%
79	9	A-LAMP	R	2818:47				no	no	97.4\%	69	75.65	73.64	-2.65\%
80	9	A-LAMP	R	2818:47				no	no	97.3\%	25	71.16	70.29	-1.22\%
81	9	A-LAMP	R	2818:47				no	no	98.7\%	57	75.57	74.68	-1.17\%
100	12	A-LAMP	D	4290:03				no	no	102.4\%	42	84.76	87.21	2.89\%
101	12	A-LAMP	U	4414:26				no	no	109.5\%	158	83.68	91.55	9.41\%
102	12	A-LAMP	D	4290:03				no	no	103.6\%	27	80.43	83.00	3.19\%
103	12	A-LAMP	C	4103:22				no	no	102.5\%	60	78.07	80.38	2.96\%
104	12	A-LAMP	C	4103:22				no	no	99.0\%	112	75.55	75.15	-0.52\%
105	12	A-LAMP	C	4103:22				no	no	102.6\%	63	75.11	77.72	3.46\%
106	12	A-LAMP	R	3845:44				no	no	99.9\%	90	76.21	76.98	1.01\%
107	12	A-LAMP	R	3845:44				no	no	98.1\%	60	77.17	77.21	0.05\%
108	12	A-LAMP	R	3845:44				no	no	101.4\%	80	72.61	74.86	3.09\%
109	13	A-LAMP	U	2572:18	2572:18			no	no	0.0\%		67.75	\#DIV/0!	\#DIV/0!
110	13	A-LAMP	D	1742:05	1742:05			no	no	0.0\%		70.53	\#DIV/0!	\#DIV/0!
111	13	A-LAMP	U	4414:26	too low to	4090:24	CYCLING	no	no	0.0\%		68.76	\#DIV/0!	\#DIV/0!
112	13	A-LAMP	C	1057:59	1057:59			no	no	0.0\%		64.04	\#DIV/0!	\#DIV/0!
113	13	A-LAMP	C	666:09	666:09			no	no	0.0\%		69.25	\#DIV/0!	\#DIV/0!
114	13	A-LAMP	C	2811:30	2811:30			no	no	0.0\%		64.33	\#DIV/0!	\#DIV/0!
115	13	A-LAMP	R	1958:32	1958:32			no	no	0.0\%		68.70	\#DIV/0!	\#DIV/0!
116	13	A-LAMP	R	1652:28	1652:28			no	no	0.0\%		66.07	\#DIV/0!	\#DIV/0!
117	13	A-LAMP	R	1487:10	1487:10			no	no	0.0\%		71.54	\#DIV/0!	\#DIV/0!
118	14	A-LAMP	D	4534:51				no	no	103.6\%	41	69.55	71.90	3.39\%
119	14	A-LAMP	U	4414:26				no	no	103.4\%	90	71.68	74.17	3.48\%
120	14	A-LAMP	D	4534:51				no	no	101.7\%	9	70.95	72.26	1.85\%
121	14	A-LAMP	C	4222:32				no	no	100.6\%	51	70.97	71.48	0.71\%
122	14	A-LAMP	C	2207:41	2207:41			no	no	0.0\%		70.04	\#DIV/0!	\#DIV/0!
123	14	A-LAMP	C	4222:32				no	no	98.7\%	59	72.75	71.84	-1.24\%
124	14	A-LAMP	R	4534:32				no	no	99.9\%	34	69.28	69.43	0.22\%
125	14	A-LAMP	R	4534:32				no	no	99.0\%	21	69.39	68.64	-1.09\%
126	14	A-LAMP	R	3167:46	3167:46			no	no	0.0\%		65.25	\#DIV/0!	\#DIV/0!
127	15	A-LAMP	U	4414:26				no	no	105.0\%	118	66.22	69.68	5.23\%
128	15	A-LAMP	D	3845:44				no	no	102.2\%	50	65.04	67.01	3.03\%
129	15	A-LAMP	U	4414:26				no	no	105.1\%	102	66.16	69.63	5.24\%
130	15	A-LAMP	C	4103:22				no	no	97.7\%	37	69.47	68.30	-1.69\%
131	15	A-LAMP	C	4103:22				no	no	99.6\%	25	67.97	67.98	0.02\%
132	15	A-LAMP	C	4103:22				no	no	101.6\%	28	69.56	70.69	1.63\%
133	15	A-LAMP	R	3666:39	3666:39	2584:41	<70\% L.O.	no	no	0.0\%		64.99	\#DIV/0!	\#DIV/0!
134	15	A-LAMP	R	3845:44				no	no	102.8\%	40	65.58	67.82	3.42\%
135	15	A-LAMP	R	2959:30	2950:20			no	no	0.0\%		67.60	\#DIV/0!	\#DIV/0!
136	16	A-LAMP	D	4055:30				no	no	105.2\%	213	81.52	85.70	5.13\%
137	16	A-LAMP	U	4057:07				no	no	103.8\%	78	85.05	89.03	4.67\%
138	16	A-LAMP	D	4055:30				no	no	105.7\%	123	108.13	114.03	5.46\%
139	16	A-LAMP	C	4103:22				no	no	104.6\%	98	95.92	100.39	4.66\%
140	16	A-LAMP	C	4103:22				no	no	104.3\%	148	88.43	92.39	4.48\%
141	16	A-LAMP	C	4103:22				no	no	107.0\%	119	88.44	94.47	6.81\%
142	16	A-LAMP	R	3938:34				no	no	104.6\%	107	84.21	87.83	4.29\%
143	16	A-LAMP	R	3938:34				no	no	105.9\%	91	82.65	88.78	7.42\%
144	16	A-LAMP	R	3938:34				no	no	104.9\%	119	106.85	111.49	4.34\%
145	17	A-LAMP	D	4534:51				no	no	104.2\%	48	64.29	66.05	2.73\%
146	17	A-LAMP	U	4368:55				no	no	106.0\%	179	66.43	70.00	5.39\%
147	17	A-LAMP	D	4534:51				no	no	103.0\%	54	65.36	66.83	2.25\%
148	17	A-LAMP	C	4222:32				no	no	99.9\%	72	67.02	66.57	-0.67\%
149	17	A-LAMP	C	4222:32				no	no	101.8\%	79	64.36	65.12	1.19\%
150	17	A-LAMP	C	4222:32				no	no	100.7\%	42	65.04	65.47	0.66\%
151	17	A-LAMP	R	3938:34				no	no	100.9\%	69	66.38	67.19	1.22\%
152	17	A-LAMP	R	3938:34				no	no	102.9\%	47	62.78	63.82	1.65\%
153	17	A-LAMP	R	3938:34				no	no	101.4\%	63	65.27	64.67	-0.92\%
154	18	A-LAMP	D	4290:03				no	no	102.5\%	30	87.57	89.60	2.31\%
155	18	A-LAMP	U	3938:34				no	no	103.8\%	28	86.37	89.72	3.87\%
156	18	A-LAMP	D	4290:03				no	no	102.7\%	27	86.36	88.85	2.89\%
157	18	A-LAMP	C	4008:18				no	no	101.7\%	17	88.08	89.39	1.49\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	Pre-Fail Time	Pre-Fail Mode	Pre-Fail Only?	Zombie?	Lumen Maintenance	$\begin{aligned} & \hline \text { Color } \\ & \text { Shift } \\ & \hline \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
158	18	A-LAMP	C	4008:18				no	no	100.2\%	36	89.28	88.83	-0.50\%
159	18	A-LAMP	C	4008:18				no	no	100.2\%	29	88.47	88.21	-0.30\%
160	18	A-LAMP	R	4225:25				no	no	99.5\%	22	89.51	88.93	-0.65\%
161	18	A-LAMP	R	4225:25				no	no	96.3\%	27	89.74	86.43	-3.68\%
162	18	A-LAMP	R	4225:25				no	no	100.0\%	25	89.78	89.06	-0.81\%
163	19	A-LAMP	U	4368:55				no	no	98.5\%	9	74.31	73.52	-1.06\%
164	19	A-LAMP	D	4290:03				no	no	97.6\%	5	75.24	74.38	-1.15\%
165	19	A-LAMP	U	4368:55				no	no	101.4\%	81	75.04	76.10	1.42\%
166	19	A-LAMP	C	1594:11	1594:11			no	no	0.0\%		73.11	\#DIV/0!	\#DIV/0!
167	19	A-LAMP	C	1850:28	1850:28			no	yes	0.0\%		77.14	\#DIV/0!	\#DIV/0!
168	19	A-LAMP	C	4008:18				no	no	91.2\%	11	71.71	67.04	-6.51\%
169	19	A-LAMP	R	3938:34				no	no	93.2\%	0	73.92	68.66	-7.12\%
170	19	A-LAMP	R	3225:49	3225:49			no	no	0.0\%		74.84	\#DIV/0!	\#DIV/0!
171	19	A-LAMP	R	1392:50	1392:50			no	no	0.0\%		74.95	\#DIV/0!	\#DIV/0!
172	20	A-LAMP	D	1989:21	1989:21			no	no	0.0\%		63.35	\#DIV/0!	\#DIV/0!
173	20	A-LAMP	U	2276:47	2276:47			no	no	0.0\%		62.26	\#DIV/0!	\#DIV/0!
174	20	A-LAMP	D	1862:48	1862:48			no	no	0.0\%		61.47	\#DIV/0!	\#DIV/0!
175	20	A-LAMP	C	2750:33	2750:33			no	no	0.0\%		64.87	\#DIV/0!	\#DIV/0!
176	20	A-LAMP	C	1933:52	1933:52			no	no	0.0\%		61.90	\#DIV/0!	\#DIV/0!
177	20	A-LAMP	C	2751:14	2751:14			no	no	0.0\%		63.18	\#DIV/0!	\#DIV/0!
178	20	A-LAMP	R	1806:30	1806:30			no	no	0.0\%		63.87	\#DIV/0!	\#DIV/0!
179	20	A-LAMP	R	1548:35	1548:35			no	no	0.0\%		64.24	\#DIV/0!	\#DIV/0!
180	20	A-LAMP	R	1213:14	1213:14			no	yes	0.0\%		61.90	\#DIV/0!	\#DIV/0!
190	22	A-LAMP	D	3740:36	3740:36			no	no	0.0\%		87.91	\#DIV/0!	\#DIV/0!
191	22	A-LAMP	U	4362:49	4362:49			no	no	0.0\%		89.82	\#DIV/0!	\#DIV/0!
192	22	A-LAMP	D	4534:51				no	no	97.7\%	66	92.07	89.88	-2.38\%
193	22	A-LAMP	C	3505:47	3505:47			no	no	0.0\%		92.91	\#DIV/0!	\#DIV/0!
194	22	A-LAMP	C	4222:32				no	no	87.7\%	77	89.96	83.61	-7.05\%
195	22	A-LAMP	C	1485:13	1485:13			no	no	0.0\%		92.21	\#DIV/0!	\#DIV/0!
196	22	A-LAMP	R	2818:47				no	no	87.1\%	127	83.19	70.85	-14.83\%
197	22	A-LAMP	R	2818:47				no	no	86.1\%	121	82.86	67.84	-18.13\%
198	22	A-LAMP	R	2818:47				no	no	96.1\%	81	91.01	84.40	-7.26\%
199	23	A-LAMP	U	3994:21	3998:34	3994:21	<70\% L.O.	no	no	0.0\%		80.29	\#DIV/0!	\#DIV/0!
200	23	A-LAMP	D	3607:51	3612:04		CYCLING	no	no	0.0\%		83.50	\#DIV/0!	\#DIV/0!
201	23	A-LAMP	U	3057:54	3057:54			no	yes	0.0\%		84.89	\#DIV/0!	\#DIV/0!
202	23	A-LAMP	C	2381:05	2381:05			no	no	0.0\%		85.83	\#DIV/0!	\#DIV/0!
203	23	A-LAMP	C	3010:50	3010:50			no	no	0.0\%		84.53	\#DIV/0!	\#DIV/0!
204	23	A-LAMP	C	2777:03	2777:03			no	no	0.0\%		80.45	\#DIV/0!	\#DIV/0!
205	23	A-LAMP	R	2317:30	2317:30			no	no	0.0\%		82.41	\#DIV/0!	\#DIV/0!
206	23	A-LAMP	R	3048:34	3038:48			no	no	0.0\%		77.52	\#DIV/0!	\#DIV/0!
207	23	A-LAMP	R	3273:57	3273:57			no	no	0.0\%		86.23	\#DIV/0!	\#DIV/0!
208	24	A-LAMP	D	4534:32				no	no	101.0\%	-1	62.04	62.37	0.54\%
209	24	A-LAMP	U	4085:12				no	no	102.0\%	3	61.44	62.90	2.38\%
210	24	A-LAMP	D	4534:32				no	no	98.1\%	95	63.08	61.85	-1.94\%
211	24	A-LAMP	C	4252:08				no	no	93.7\%	0	61.46	57.44	-6.54\%
212	24	A-LAMP	C	4252:08				no	no	96.1\%	38	65.21	62.47	-4.20\%
213	24	A-LAMP	C	4252:08				no	no	96.4\%	70	62.95	60.39	-4.08\%
214	24	A-LAMP	R	4085:12				no	no	97.4\%	-17	60.30	58.51	-2.97\%
215	24	A-LAMP	R	4085:12				no	no	98.0\%	4	64.03	62.40	-2.54\%
216	24	A-LAMP	R	4085:12				no	no	97.7\%	-18	67.69	66.22	-2.18\%
235	27	A-LAMP	U	4414:26				no	no	104.7\%	82	85.21	90.20	5.86\%
236	27	A-LAMP	D	4534:51				no	no	102.4\%	11	86.34	89.39	3.53\%
237	27	A-LAMP	U	4414:26				no	no	104.4\%	76	83.74	87.67	4.69\%
238	27	A-LAMP	C	4554:56				no	no	98.5\%	13	86.94	87.18	0.27\%
239	27	A-LAMP	C	4554:56				no	no	101.3\%	11	83.33	85.68	2.82\%
240	27	A-LAMP	C	4554:56				no	no	99.0\%	19	86.11	86.69	0.67\%
241	27	A-LAMP	R	4534:32		392:56	<5 CYCLE	yes	no	98.7\%	11	85.46	85.72	0.30\%
242	27	A-LAMP	R	4534:32				no	no	96.5\%	5	85.64	84.14	-1.75\%
243	27	A-LAMP	R	4534:32				no	no	96.4\%	10	85.86	84.17	-1.98\%
253	29	A-LAMP	D	4534:51				no	no	102.4\%	40	74.41	76.68	3.06\%
254	29	A-LAMP	U	4414:26				no	no	101.3\%	110	75.57	77.65	2.74\%
255	29	A-LAMP	D	4534:51				no	no	98.8\%	58	75.40	74.61	-1.04\%
256	29	A-LAMP	C	4079:12				no	no	97.8\%	53	76.59	75.99	-0.78\%
257	29	A-LAMP	C	4079:12				no	no	99.8\%	54	76.69	76.22	-0.61\%
258	29	A-LAMP	C	4079:12				no	no	99.4\%	57	75.41	74.66	-0.99\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	$\begin{gathered} \hline \text { Pre-Fail } \\ \text { Time } \end{gathered}$	Pre-Fail Mode	$\begin{aligned} & \text { Pre-Fail } \\ & \text { Only? } \end{aligned}$	Zombie?	Lumen Maintenance	$\begin{aligned} & \text { Color } \\ & \text { Shift } \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
259	29	A-LAMP	R	2818:47				no	no	102.3\%	57	76.38	77.17	1.04\%
260	29	A-LAMP	R	2818:47				no	no	101.7\%	35	75.01	76.95	2.59\%
261	29	A-LAMP	R	2818:47				no	no	101.1\%	44	75.08	75.28	0.26\%
262	30	A-LAMP	D	4055:30				no	no	98.4\%	319	98.00	96.17	-1.87\%
263	30	A-LAMP	U	2781:20	2781:20			no	no	0.0\%		98.83	\#DIV/0!	\#DIV/0!
264	30	A-LAMP	D	4055:30				no	no	100.0\%	254	100.66	99.45	-1.20\%
265	30	A-LAMP	C	3348:06	3348:06			no	no	0.0\%		95.15	\#DIV/0!	\#DIV/0!
266	30	A-LAMP	C	2858:00	2858:00			no	no	0.0\%		99.73	\#DIV/0!	\#DIV/0!
267	30	A-LAMP	C	3003:10	3003:10			no	no	0.0\%		95.23	\#DIV/0!	\#DIV/0!
268	30	A-LAMP	R	3258:32	3258:32			no	no	0.0\%		96.27	\#DIV/0!	\#DIV/0!
269	30	A-LAMP	R	776:13	776:13			no	no	0.0\%		100.31	\#DIV/0!	\#DIV/0!
270	30	A-LAMP	R	2405:50	2405:50			no	no	0.0\%		96.80	\#DIV/0!	\#DIV/0!
271	31	A-LAMP	D	3292:70	3792:70	2698:25	CYCLING	no	no	0.0\%		74.34	\#DIV/0!	\#DIV/0!
272	31	A-LAMP	U	3613:00	3613:00			no	yes	0.0\%		73.42	\#DIV/0!	\#DIV/0!
273	31	A-LAMP	D	4290:03				no	no	97.7\%	24	74.08	73.27	-1.09\%
274	31	A-LAMP	C	1478:15	1478:15			no	yes	0.0\%		71.05	\#DIV/0!	\#DIV/0!
275	31	A-LAMP	C	1009:05	1009:05			no	yes	0.0\%		71.77	\#DIV/0!	\#DIV/0!
276	31	A-LAMP	C	3355:40	3355:40			no	no	0.0\%		72.03	\#DIV/0!	\#DIV/0!
277	31	A-LAMP	R	1643:38	1643:38			no	yes	0.0\%		69.18	\#DIV/0!	\#DIV/0!
278	31	A-LAMP	R	2629:34	2629:34			no	no	0.0\%		73.00	\#DIV/0!	\#DIV/0!
279	31	A-LAMP	R	1029:56	1029:56			no	no	0.0\%		72.02	\#DIV/0!	\#DIV/0!
289	33	A-LAMP	U	1082:46	1082:46			no	yes	0.0\%		83.32	\#DIV/0!	\#DIV/0!
290	33	A-LAMP	D	4534:51				no	no	101.2\%	-31	82.01	83.74	2.11\%
291	33	A-LAMP	U	3938:34				no	no	101.4\%	-3	79.63	81.45	2.29\%
292	33	A-LAMP	C	1403:43	1403:43			no	yes	0.0\%		83.69	\#DIV/0!	\#DIV/0!
293	33	A-LAMP	C	999:40	999:40			no	yes	0.0\%		80.89	\#DIV/0!	\#DIV/0!
294	33	A-LAMP	C	4008:18				no	no	97.2\%	-32	78.94	76.79	-2.72\%
295	33	A-LAMP	R	2092:22	2092:22			no	yes	0.0\%		84.39	\#DIV/0!	\#DIV/0!
296	33	A-LAMP	R	975:56	975:56			no	yes	0.0\%		86.10	\#DIV/0!	\#DIV/0!
297	33	A-LAMP	R	1343:10	1343:10			no	no	0.0\%		84.58	\#DIV/0!	\#DIV/0!
316	36	A-LAMP	D	4055:30				no	no	99.8\%	15	113.89	113.88	0.00\%
317	36	A-LAMP	U	4085:12				no	no	101.5\%	14	114.95	116.42	1.28\%
318	36	A-LAMP	D	4055:30				no	no	100.8\%	18	113.40	114.65	1.10\%
319	36	A-LAMP	C	4252:08				no	no	100.1\%	-20	117.07	116.56	-0.43\%
320	36	A-LAMP	C	1091:01	1091:01			no	yes	0.0\%		116.57	\#DIV/0!	\#DIV/0!
321	36	A-LAMP	C	4252:08				no	no	100.5\%	23	117.89	118.11	0.19\%
322	36	A-LAMP	R	2275:43	2275:43			no	yes	0.0\%		115.59	\#DIV/0!	\#DIV/0!
323	36	A-LAMP	R	4173:08		3887:58	CYCLING	yes	no	102.2\%	-47	116.97	120.76	3.24\%
324	36	A-LAMP	R	4173:08				no	no	102.4\%	-22	110.25	112.06	1.64\%
325	37	A-LAMP	U	4368:55				no	no	103.8\%	44	61.01	63.34	3.83\%
326	37	A-LAMP	D	4055:30				no	no	103.3\%	7	60.89	62.52	2.69\%
327	37	A-LAMP	U	4368:55				no	no	106.6\%	53	62.79	66.77	6.33\%
328	37	A-LAMP	C	4252:08				no	no	68.4\%	163	62.35	42.29	-32.17\%
329	37	A-LAMP	C	4252:08				no	no	69.9\%	114	61.37	42.41	-30.89\%
330	37	A-LAMP	C	4252:08				no	no	76.0\%	88	61.39	46.11	-24.90\%
331	37	A-LAMP	R	4252:48				no	no	90.3\%	16	61.29	54.77	-10.64\%
332	37	A-LAMP	R	4252:48				no	no	81.7\%	52	61.39	49.78	-18.91\%
333	37	A-LAMP	R	4252:48				no	no	60.3\%	363	60.26	36.07	-40.15\%
334	38	A-LAMP	D	4534:51				no	no	100.7\%	38	77.29	78.38	1.40\%
335	38	A-LAMP	U	4368:55				no	no	100.2\%	21	78.06	78.32	0.33\%
336	38	A-LAMP	D	1942:49	1942:49			no	no	0.0\%		76.81	\#DIV/0!	\#DIV/0!
337	38	A-LAMP	C	1481:34	1481:34			no	no	0.0\%		79.41	\#DIV/0!	\#DIV/0!
338	38	A-LAMP	C	2052:22	2052:22			no	no	0.0\%		79.31	\#DIV/0!	\#DIV/0!
339	38	A-LAMP	C	1570:40	1570:40			no	no	0.0\%		77.28	\#DIV/0!	\#DIV/0!
340	38	A-LAMP	R	1619:26	1619:26			no	no	0.0\%		78.23	\#DIV/0!	\#DIV/0!
341	38	A-LAMP	R	1280:41	1280:41			no	no	0.0\%		78.48	\#DIV/0!	\#DIV/0!
342	38	A-LAMP	R	1483:11	1483:11			no	no	0.0\%		80.39	\#DIV/0!	\#DIV/0!
343	39	A-LAMP	U	4368:55				no	no	97.8\%	32	80.84	78.92	-2.37\%
344	39	A-LAMP	D	4534:51				no	no	96.6\%	94	69.96	68.29	-2.38\%
345	39	A-LAMP	U	4074:28	4074:28	3827:15	CYCLING	no	no	0.0\%		70.79	\#DIV/0!	\#DIV/0!
346	39	A-LAMP	C	4079:12				no	no	94.7\%	102	69.29	65.12	-6.01\%
347	39	A-LAMP	C	4079:12				no	no	93.8\%	88	70.09	66.78	-4.72\%
348	39	A-LAMP	C	4079:12				no	no	94.1\%	86	72.13	68.36	-5.23\%
349	39	A-LAMP	R	2818:47				no	no	96.7\%	64	70.66	68.18	-3.51\%
350	39	A-LAMP	R	2818:47				no	no	97.8\%	87	70.48	68.66	-2.59\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	Pre-Fail Time	Pre-Fail Mode	Pre-Fail Only?	Zombie?	Lumen Maintenance	$\begin{aligned} & \hline \text { Color } \\ & \text { Shift } \\ & \hline \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
351	39	A-LAMP	R	2818:47				no	no	96.8\%	66	70.73	68.38	-3.33\%
352	40	A-LAMP	D	4290:03				no	no	91.7\%	121	92.69	85.92	-7.30\%
353	40	A-LAMP	U	1497:56	1497:56			no	no	0.0\%		92.69	\#DIV/0!	\#DIV/0!
354	40	A-LAMP	D	4290:03				no	no	91.1\%	100	93.94	86.18	-8.27\%
355	40	A-LAMP	C	4008:18				no	no	96.1\%	65	90.69	87.33	-3.71\%
356	40	A-LAMP	C	4008:18				no	no	100.6\%	47	90.69	92.02	1.46\%
357	40	A-LAMP	C	2562:55	2562:55			no	no	0.0\%		92.39	\#DIV/0!	\#DIV/0!
358	40	A-LAMP	R	4534:32				no	no	94.5\%	58	94.24	89.84	-4.66\%
359	40	A-LAMP	R	4534:32				no	no	92.3\%	101	91.51	85.19	-6.91\%
360	40	A-LAMP	R	4534:32				no	no	91.8\%	89	92.55	79.30	-14.31\%
361	41	A-LAMP	U	4057:07				no	no	102.7\%	-1	97.71	100.08	2.43\%
362	41	A-LAMP	D	4055:30				no	no	102.5\%	10	95.28	97.28	2.09\%
363	41	A-LAMP	U	4057:07				no	no	103.9\%	-6	97.82	101.66	3.92\%
364	41	A-LAMP	C	4252:08				no	no	98.8\%	25	97.42	95.87	-1.60\%
365	41	A-LAMP	C	4252:08		3386:48	CYCLING	yes	no	100.0\%	11	100.10	100.40	0.30\%
366	41	A-LAMP	C	2786:50	2786:50			no	no	0.0\%		97.09	\#DIV/0!	\#DIV/0!
367	41	A-LAMP	R	4173:08				no	no	99.7\%	-2	99.72	99.16	-0.56\%
368	41	A-LAMP	R	4134:22		4134:22	CYCLING	no	no	101.6\%	0	98.68	99.64	0.97\%
369	41	A-LAMP	R	86:04	86:04			no	no	0.0\%		95.89	\#DIV/0!	\#DIV/0!
379	43	A-LAMP	U	3540:04	3540:04			no	no	0.0\%		70.63	\#DIV/0!	\#DIV/0!
380	43	A-LAMP	D	4055:30				no	no	100.7\%	21	73.62	73.15	-0.64\%
381	43	A-LAMP	U	4057:07				no	no	101.7\%	7	72.41	72.79	0.52\%
382	43	A-LAMP	C	3333:56	3333:56	3151:34	CYCLING	no	no	0.0\%		81.38	\#DIV/0!	\#DIV/0!
383	43	A-LAMP	C	4252:08	Failed when prewarming for fina			no	no	0.0\%		69.65	\#DIV/0!	\#DIV/0!
384	43	A-LAMP	C	4252:08				no	no	95.8\%	-3	73.10	69.96	-4.29\%
385	43	A-LAMP	R	1787:11	1787:11			no	no	0.0\%		72.51	\#DIV/0!	\#DIV/0!
386	43	A-LAMP	R	4085:12				no	no	94.8\%	-16	72.41	68.40	-5.54\%
387	43	A-LAMP	R	3303:54	3303:54			no	no	0.0\%		72.65	\#DIV/0!	\#DIV/0!
388	44	A-LAMP	D	1473:17	1473:17			no	no	0.0\%		80.33	\#DIV/0!	\#DIV/0!
389	44	A-LAMP	U	2047:08	2047:08			no	no	0.0\%		81.26	\#DIV/0!	\#DIV/0!
390	44	A-LAMP	D	1660:27	1660:27			no	no	0.0\%		82.76	\#DIV/0!	\#DIV/0!
391	44	A-LAMP	C	2667:07	2667:07			no	no	0.0\%		79.66	\#DIV/0!	\#DIV/0!
392	44	A-LAMP	C	2363:48	2363:48			no	no	0.0\%		80.55	\#DIV/0!	\#DIV/0!
393	44	A-LAMP	C	773:34	773:34			no	no	0.0\%		84.52	\#DIV/0!	\#DIV/0!
394	44	A-LAMP	R	2246:23	2246:23	1882:54	CYCLING	no	no	0.0\%		84.83	\#DIV/0!	\#DIV/0!
395	44	A-LAMP	R	1557:14	1557:14			no	no	0.0\%		81.65	\#DIV/0!	\#DIV/0!
396	44	A-LAMP	R	1902:43	1902:43			no	no	0.0\%		80.17	\#DIV/0!	\#DIV/0!
397	45	A-LAMP	U	4368:55		3892:31	<70\% L.O.	yes	no	55.0\%	119	92.09	83.02	-9.85\%
398	45	A-LAMP	D	2875:31	2875:31			no	no	0.0\%		90.77	\#DIV/0!	\#DIV/0!
399	45	A-LAMP	U	3530:52	3530:52	3109:27	<70\% L.O.	no	no	0.0\%		91.64	\#DIV/0!	\#DIV/0!
400	45	A-LAMP	C	3636:41	3636:41			no	no	0.0\%		92.31	\#DIV/0!	\#DIV/0!
401	45	A-LAMP	C	4008:18				no	no	81.9\%	401	95.62	80.55	-15.77\%
402	45	A-LAMP	C	4008:18				no	no	89.6\%	479	92.92	78.59	-15.42\%
403	45	A-LAMP	R	2345:00	2345:00			no	no	0.0\%		91.28	\#DIV/0!	\#DIV/0!
404	45	A-LAMP	R	2239:12	2239:12	2208:42	<70\% L.O.	no	no	0.0\%		92.56	\#DIV/0!	\#DIV/0!
405	45	A-LAMP	R	2818:47		2620:31	CYCLING	yes	no	87.5\%	302	95.15	85.95	-9.67\%
406	46	A-LAMP	D	4534:32		4486:39	CYCLING	yes	no	100.7\%	27	106.63	107.28	0.61\%
407	46	A-LAMP	U	4085:12				no	no	101.2\%	-3	106.06	107.17	1.04\%
408	46	A-LAMP	D	1802:20	1802:20			no	no	0.0\%		107.77	\#DIV/0!	\#DIV/0!
409	46	A-LAMP	C	1991:50	1991:50			no	no	0.0\%		105.41	\#DIV/0!	\#DIV/0!
410	46	A-LAMP	C	4252:08		1910:52	CYCLING	yes	no	101.2\%	-2	103.21	103.43	0.22\%
411	46	A-LAMP	C	394:00	394:00			no	no	0.0\%		90.64	\#DIV/0!	\#DIV/0!
412	46	A-LAMP	R	4173:08				no	no	102.0\%	9	105.56	107.40	1.75\%
413	46	A-LAMP	R	886:14	886:14			no	yes	0.0\%		91.73	\#DIV/0!	\#DIV/0!
414	46	A-LAMP	R	4173:08		3678:47	CYCLING	yes	no	102.7\%	-25	106.11	108.30	2.07\%
415	47	A-LAMP	U	4368:55		3456:40	CYCLING	yes	no	12.5\%	245	93.03	84.80	-8.84\%
416	47	A-LAMP	D	4290:03				no	no	101.5\%	12	92.21	93.83	1.76\%
417	47	A-LAMP	U	4368:55				no	no	100.2\%	6	94.11	94.59	0.52\%
418	47	A-LAMP	C	1666:46	1666:46			no	no	0.0\%		92.90	\#DIV/0!	\#DIV/0!
419	47	A-LAMP	C	1013:19	1013:19			no	yes	0.0\%		93.99	\#DIV/0!	\#DIV/0!
420	47	A-LAMP	C	1005:05	1005:05			no	yes	0.0\%		92.50	\#DIV/0!	\#DIV/0!
421	47	A-LAMP	R	1389:21	1389:21			no	no	0.0\%		94.73	\#DIV/0!	\#DIV/0!
422	47	A-LAMP	R	4085:12		786:01	<70\% L.O	yes	no	4.0\%	-58	90.22	50.66	-43.85\%
423	47	A-LAMP	R	4085:12		1058:43	<70\% L.O	yes	no	4.0\%	-59	95.47	56.49	-40.83\%
424	48	A-LAMP	D	1443:19	1443:19			no	no	0.0\%		82.19	\#DIV/0!	\#DIV/0!

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	$\begin{aligned} & \text { Pre-Fail } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \text { Pre-Fail } \\ \text { Mode } \\ \hline \end{gathered}$	Pre-Fail Only?	Zombie?	Lumen Maintenance	$\begin{aligned} & \text { Color } \\ & \text { Shift } \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
425	48	A-LAMP	U	1520:06	1520:06			no	no	0.0\%		86.66	\#DIV/0!	\#DIV/0!
426	48	A-LAMP	D	1853:05	1853:05			no	no	0.0\%		84.92	\#DIV/0!	\#DIV/0!
427	48	A-LAMP	C	1778:20	1778:20			no	no	0.0\%		84.15	\#DIV/0!	\#DIV/0!
428	48	A-LAMP	C	2320:06	2320:06			no	no	0.0\%		85.38	\#DIV/0!	\#DIV/0!
429	48	A-LAMP	C	2210:49	2210:49			no	no	0.0\%		87.18	\#DIV/0!	\#DIV/0!
430	48	A-LAMP	R	1674:11	1674:11			no	no	0.0\%		83.57	\#DIV/0!	\#DIV/0!
431	48	A-LAMP	R	1504:39	1504:39			no	no	0.0\%		88.75	\#DIV/0!	\#DIV/0!
432	48	A-LAMP	R	1243:10	1243:10			no	no	0.0\%		86.65	\#DIV/0!	\#DIV/0!
433	49	A-LAMP	U	4057:07				no	no	100.2\%	25	96.02	96.79	0.81\%
434	49	A-LAMP	D	4055:30				no	no	98.8\%	73	93.89	93.48	-0.44\%
435	49	A-LAMP	U	4057:07				no	no	100.1\%	35	94.26	94.62	0.39\%
436	49	A-LAMP	C	4252:08				no	no	94.0\%	94	92.45	86.93	-5.98\%
437	49	A-LAMP	C	725:47	725:47			no	no	0.0\%		92.77	\#DIV/0!	\#DIV/0!
438	49	A-LAMP	C	2204:22	2204:22			no	no	0.0\%		92.56	\#DIV/0!	\#DIV/0!
439	49	A-LAMP	R	4173:08				no	no	96.6\%	92	92.92	89.83	-3.32\%
440	49	A-LAMP	R	4173:08				no	no	93.6\%	47	90.81	92.01	1.33\%
441	49	A-LAMP	R	4173:08		3974:24	CYCLING	yes	no	83.8\%	168	95.19	80.63	-15.30\%
442	50	GLOBE	D	4534:51				no	no	103.1\%	52	69.37	71.14	2.55\%
443	50	GLOBE	U	4414:26		392:56	<5 CYCLE	yes	no	102.2\%	13	70.78	72.10	1.88\%
444	50	GLOBE	D	4534:51				no	no	101.2\%	1	70.57	71.41	1.19\%
445	51	GLOBE	U	4057:07				no	no	101.0\%	18	88.94	88.06	-0.99\%
446	51	GLOBE	D	4055:30				no	no	104.8\%	59	86.88	89.97	3.55\%
447	51	GLOBE	U	4057:07				no	no	104.3\%	5	85.11	88.76	4.29\%
448	52	GLOBE	D	4534:51				no	no	103.0\%	59	67.63	69.85	3.28\%
449	52	GLOBE	U	4368:55				no	no	102.7\%	-29	68.89	70.46	2.28\%
450	52	GLOBE	D	4534:51				no	no	101.9\%	4	67.16	68.66	2.24\%
451	53	GLOBE	U	3938:34				no	no	101.6\%	20	66.06	66.25	0.28\%
452	53	GLOBE	D	4290:03				no	no	100.0\%	-22	65.70	65.49	-0.31\%
453	53	GLOBE	U	3938:34				no	no	100.5\%	11	65.48	65.46	-0.03\%
454	54	GLOBE	D	4534:51				no	no	103.4\%	35	96.06	98.50	2.54\%
455	54	GLOBE	U	4414:26				no	no	105.3\%	75	96.83	102.06	5.39\%
456	54	GLOBE	D	4534:51				no	no	103.8\%	3	94.36	99.74	5.70\%
460	56	GLOBE	D	4055:30				no	no	103.1\%	-9	75.21	77.07	2.47\%
461	56	GLOBE	U	4057:07				no	no	103.2\%	-3	75.15	77.58	3.23\%
462	56	GLOBE	D	4055:30				no	no	103.5\%	50	71.95	74.33	3.31\%
463	57	GLOBE	U	940:22	940:22			no	no	0.0\%		69.68	\#DIV/0!	\#DIV/0!
464	57	GLOBE	D	4290:03				no	no	100.8\%	10	67.14	67.32	0.27\%
465	57	GLOBE	U	4414:26				no	no	102.9\%	27	66.44	68.31	2.81\%
466	58	GLOBE	D	4534:51				no	no	102.4\%	40	91.62	93.69	2.26\%
467	58	GLOBE	U	3938:34				no	no	102.0\%	23	95.08	96.73	1.75\%
468	58	GLOBE	D	4534:51				no	no	101.4\%	17	92.27	93.94	1.81\%
469	59	GLOBE	U	4368:55				no	no	106.0\%	-12	77.61	82.00	5.65\%
470	59	GLOBE	D	4290:03				no	no	103.6\%	-5	82.76	85.78	3.64\%
471	59	GLOBE	D	4290:03				no	no	97.4\%	44	59.59	58.47	-1.89\%
472	60	TORPEDO/BULLET	D	4534:51				no	no	83.5\%	-168	70.94	59.90	-15.56\%
473	60	TORPEDO/BULLET	U	4414:26				no	no	106.3\%	505	70.02	74.27	6.07\%
474	60	TORPEDO/BULLET	D	4534:51				no	no	106.3\%	33	69.02	73.28	6.17\%
475	60	TORPEDO/BULLET	C	4079:12				no	no	107.8\%	124	67.19	72.29	7.58\%
476	60	TORPEDO/BULLET	C	4079:12				no	no	108.4\%	124	67.94	73.46	8.13\%
477	60	TORPEDO/BULLET	C	4079:12				no	no	105.0\%	33	69.75	73.50	5.38\%
478	61	TORPEDO/BULLET	U	4414:26				no	no	98.7\%	593	44.67	44.03	-1.44\%
479	61	TORPEDO/BULLET	D	4534:51				no	no	83.3\%	41	46.70	39.23	-16.01\%
480	61	TORPEDO/BULLET	U	4414:26				no	no	96.2\%	570	45.79	44.28	-3.31\%
481	61	TORPEDO/BULLET	C	4554:56				no	no	89.0\%	109	48.29	42.63	-11.72\%
482	61	TORPEDO/BULLET	C	4554:56				no	no	85.0\%	76	47.75	40.49	-15.21\%
483	61	TORPEDO/BULLET	C	4554:56				no	no	79.4\%	153	46.50	36.70	-21.07\%
484	62	TORPEDO/BULLET	D	4534:51				no	no	101.1\%	122	99.08	99.81	0.74\%
485	62	TORPEDO/BULLET	U	4414:26				no	no	107.1\%	515	101.23	108.39	7.08\%
486	62	TORPEDO/BULLET	D	4534:51				no	no	103.3\%	68	99.33	103.03	3.72\%
487	62	TORPEDO/BULLET	C	4079:12				no	no	100.8\%	114	103.15	104.32	1.14\%
488	62	TORPEDO/BULLET	C	4079:12				no	no	101.7\%	98	97.20	98.64	1.48\%
489	62	TORPEDO/BULLET	C	4079:12				no	no	102.9\%	129	96.51	98.83	2.40\%
490	63	TORPEDO/BULLET	U	4414:26		323:14	CYCLING	yes	no	104.4\%	62	74.96	78.23	4.36\%
491	63	TORPEDO/BULLET	D	4534:51		1662:55	<5 CYCLE ${ }^{\text {E }}$	yes	no	107.8\%	12	66.03	71.14	7.74\%
492	63	TORPEDO/BULLET	U	4414:26				no	no	109.5\%	261	73.27	80.19	9.44\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	$\begin{aligned} & \text { Pre-Fail } \\ & \text { Time } \end{aligned}$	Pre-Fail Mode	Pre-Fail Only?	Zombie?	 Lumen Maintenance	Color Shift	Initial Efficacy	$\begin{gathered} \hline \text { Final } \\ \text { Efficacy } \\ \hline \end{gathered}$	Efficacy Change
493	63	TORPEDO/BULLET	C	1351:43	1351:43			no	no	0.0\%		67.20	\#DIV/0!	\#DIV/0!
494	63	TORPEDO/BULLET	C	4222:32		551.12	CYCLING	yes	no	103.4\%	20	76.21	78.92	3.56\%
495	63	TORPEDO/BULLET	C	4222:32		556.56	CYCLING	yes	no	104.0\%	29	71.24	73.92	3.77\%
496	64	TORPEDO/BULLET	D	4534:51				no	no	104.0\%	124	87.14	91.03	4.47\%
497	64	TORPEDO/BULLET	U	4414:26				no	no	101.1\%	127	86.88	87.72	0.97\%
498	64	TORPEDO/BULLET	D	4534:51				no	no	101.1\%	84	90.42	90.91	0.54\%
499	64	TORPEDO/BULLET	C	4222:32				no	no	99.8\%	97	88.35	88.91	0.64\%
500	64	TORPEDO/BULLET	C	4222:32				no	no	100.0\%	114	89.42	90.15	0.81\%
501	64	TORPEDO/BULLET	C	4222:32				no	no	100.1\%	96	88.53	88.99	0.51\%
508	66	TORPEDO/BULLET	U	4414:26				no	no	105.2\%	13	78.95	83.44	5.69\%
509	66	TORPEDO/BULLET	D	4534:51				no	no	93.1\%	88	75.84	70.30	-7.30\%
510	66	TORPEDO/BULLET	D	4534:51				no	no	105.2\%	13	80.07	83.97	4.86\%
511	66	TORPEDO/BULLET	C	4554:56				no	no	102.9\%	8	80.26	82.18	2.39\%
512	66	TORPEDO/BULLET	C	4554:56				no	no	100.8\%	33	80.04	80.37	0.41\%
513	66	TORPEDO/BULLET	C	4554:56				no	no	94.0\%	86	81.46	76.02	-6.69\%
514	67	TORPEDO/BULLET	D	4534:51				no	no	99.4\%	16	86.33	85.87	-0.53\%
515	67	TORPEDO/BULLET	D	4534:51				no	no	99.4\%	4	82.15	81.67	-0.59\%
516	67	TORPEDO/BULLET	U	4414:26				no	no	101.3\%	164	86.87	88.12	1.44\%
517	67	TORPEDO/BULLET	C	3122:01	3122:01			no	no	0.0\%		79.87	\#DIV/0!	\#DIV/0!
518	67	TORPEDO/BULLET	C	4554:56				no	no	98.5\%	36	81.61	80.43	-1.45\%
519	67	TORPEDO/BULLET	C	3685:26	3685:26			no	no	0.0\%		81.99	\#DIV/0!	\#DIV/0!
520	68	TORPEDO/BULLET	U	4414:26				no	no	103.3\%	205	96.67	99.16	2.58\%
521	68	TORPEDO/BULLET	U	4414:26				no	no	102.9\%	278	99.86	101.90	2.04\%
522	68	TORPEDO/BULLET	D	4534:51				no	no	103.2\%	-61	94.57	97.35	2.94\%
523	68	TORPEDO/BULLET	C	4554:56				no	no	98.3\%	126	95.61	93.45	-2.27\%
524	68	TORPEDO/BULLET	C	4489:02	4489:02	4283:56	CYCLING	no	no	0.0\%		92.82	\#DIV/0!	\#DIV/0!
525	68	TORPEDO/BULLET	C	4554:56				no	no	100.7\%	116	94.18	94.02	-0.17\%
532	70	TORPEDO/BULLET	U	4414:26				no	no	110.7\%	202	67.63	74.72	10.47\%
533	70	TORPEDO/BULLET	U	4414:26				no	no	105.3\%	58	69.91	72.67	3.94\%
534	70	TORPEDO/BULLET	D	4534:51				no	no	105.0\%	50	66.23	69.97	5.65\%
535	70	TORPEDO/BULLET	C	4079:12				no	no	103.9\%	26	67.73	69.93	3.24\%
536	70	TORPEDO/BULLET	C	4079:12				no	no	104.3\%	58	67.30	69.05	2.60\%
537	70	TORPEDO/BULLET	C	4079:12				no	no	104.5\%	22	64.78	67.66	4.45\%
538	71	TORPEDO/BULLET	D	4534:51				no	no	100.9\%	68	76.25	76.78	0.69\%
539	71	TORPEDO/BULLET	U	4368:55				no	no	103.4\%	248	77.37	79.43	2.66\%
540	71	TORPEDO/BULLET	D	4534:51				no	no	97.5\%	62	76.46	74.28	-2.85\%
541	71	TORPEDO/BULLET	C	4554:56				no	no	97.3\%	121	74.41	72.29	-2.85\%
542	71	TORPEDO/BULLET	C	4554:56				no	no	99.2\%	66	77.01	76.09	-1.20\%
543	71	TORPEDO/BULLET	C	4554:56				no	no	98.2\%	94	74.70	73.30	-1.88\%
544	72	TORPEDO/BULLET	D	3845:44				no	no	100.3\%	101	89.06	89.76	0.78\%
545	72	TORPEDO/BULLET	U	4368:55				no	no	101.3\%	24	90.43	92.46	2.25\%
546	72	TORPEDO/BULLET	D	3845:44				no	no	99.4\%	93	85.51	85.95	0.52\%
547	73	TORPEDO/BULLET	U	4414:26				no	no	102.7\%	98	84.78	87.52	3.23\%
548	73	TORPEDO/BULLET	D	4534:51				no	no	98.2\%	8	86.11	84.52	-1.84\%
549	73	TORPEDO/BULLET	U	4414:26				no	no	107.5\%	303	79.21	85.74	8.25\%
550	74	TORPEDO/BULLET	D	4534:51				no	no	101.9\%	16	66.40	68.38	2.98\%
551	74	TORPEDO/BULLET	U	4414:26				no	no	101.1\%	210	66.30	67.41	1.68\%
552	74	TORPEDO/BULLET	D	4534:51				no	no	99.5\%	-18	65.66	65.89	0.36\%
553	75	TORPEDO/BULLET	U	4414:26				no	no	107.0\%	168	74.03	80.28	8.45\%
554	75	TORPEDO/BULLET	D	4534:51				no	no	102.3\%	25	74.81	77.16	3.14\%
555	75	TORPEDO/BULLET	U	4414:26				no	no	108.1\%	162	72.25	77.77	7.64\%
556	76	SPOTLIGHT/REFLECTOR	D	4534:32				no	no	102.5\%	65	70.30	71.91	2.29\%
557	76	SPOTLIGHT/REFLECTOR	U	4414:26				no	no	101.6\%	30	71.75	73.91	3.00\%
558	76	SPOTLIGHT/REFLECTOR	D	4534:32				no	no	97.8\%	95	73.90	72.81	-1.47\%
559	76	SPOTLIGHT/REFLECTOR	R	3845:44				no	no	103.4\%	67	71.29	74.80	4.92\%
560	76	SPOTLIGHT/REFLECTOR	R	3845:44				no	no	100.5\%	27	72.86	74.35	2.05\%
561	76	SPOTLIGHT/REFLECTOR	R	3845:44				no	no	100.8\%	18	71.53	73.22	2.37\%
562	77	SPOTLIGHT/REFLECTOR	U	4379:08				no	no	104.5\%	15	76.86	79.50	3.43\%
563	77	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	103.4\%	7	76.80	78.27	1.92\%
564	77	SPOTLIGHT/REFLECTOR	U	4379:08				no	no	102.0\%	32	76.44	78.24	2.35\%
565	77	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	104.2\%	16	76.35	78.67	3.04\%
566	77	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	103.8\%	18	77.38	79.75	3.07\%
567	77	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	104.2\%	22	77.42	79.60	2.81\%
568	78	SPOTLIGHT/REFLECTOR	D	4534:51				no	no	97.5\%	62	74.85	72.41	-3.26\%
569	78	SPOTLIGHT/REFLECTOR	U	4414:26				no	no	99.7\%	160	75.09	74.69	-0.53\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{aligned} & \hline \text { Burn } \\ & \text { Time } \\ & \hline \end{aligned}$	Fail Time	Pre-Fail Time	Pre-Fail Mode	Pre-Fail Only?	Zombie?	Lumen Maintenance	$\begin{aligned} & \hline \text { Color } \\ & \text { Shift } \\ & \hline \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
570	78	SPOTLIGHT/REFLECTOR	D	4534:51				no	no	97.4\%	83	73.78	71.51	-3.08\%
571	78	SPOTLIGHT/REFLECTOR	R	3401:17	3401:17			no	no	0.0\%		75.82	\#DIV/0!	\#DIV/0!
572	78	SPOTLIGHT/REFLECTOR	R	3845:44				no	no	93.8\%	114	74.53	66.74	-10.45\%
573	78	SPOTLIGHT/REFLECTOR	R	3845:44				no	no	93.3\%	120	74.87	68.32	-8.75\%
574	79	SPOTLIGHT/REFLECTOR	U	3938:34				no	no	97.8\%	48	76.58	74.87	-2.23\%
575	79	SPOTLIGHT/REFLECTOR	D	4534:32				no	no	98.7\%	28	76.32	75.36	-1.26\%
576	79	SPOTLIGHT/REFLECTOR	U	3938:34				no	no	101.8\%	34	77.47	78.70	1.59\%
577	79	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	99.9\%	43	78.57	78.59	0.03\%
578	79	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	102.0\%	51	75.64	77.12	1.97\%
579	79	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	100.8\%	40	79.31	80.15	1.07\%
580	80	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	103.1\%	9	71.29	74.16	4.03\%
581	80	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	106.0\%	36	69.63	73.75	5.92\%
582	80	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	104.9\%	25	70.51	73.01	3.54\%
583	80	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	101.6\%	22	70.39	70.78	0.55\%
584	80	SPOTLIGHT/REFLECTOR	R	3511:08	3511:08			no	no	0.0\%		70.47	\#DIV/0!	\#DIV/0!
585	80	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	104.1\%	-6	70.06	72.70	3.77\%
586	81	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	102.9\%	8	73.92	76.13	2.99\%
587	81	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	103.2\%	19	74.63	76.96	3.12\%
588	81	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	102.5\%	9	76.25	73.77	-3.26\%
589	81	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	102.5\%	25	75.43	77.10	2.21\%
590	81	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	103.7\%	31	66.12	68.89	4.18\%
591	81	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	101.2\%	44	70.56	71.35	1.12\%
592	82	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	103.9\%	37	65.55	67.73	3.33\%
593	82	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	103.5\%	28	66.51	68.07	2.34\%
594	82	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	102.4\%	35	62.57	63.68	1.78\%
595	82	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	100.9\%	15	64.24	65.03	1.24\%
596	82	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	103.2\%	29	64.70	65.61	1.41\%
597	82	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	101.5\%	24	65.58	66.73	1.76\%
598	83	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	104.6\%	36	69.00	72.18	4.61\%
599	83	SPOTLIGHT/REFLECTOR	U	4368:55				no	no	105.3\%	3	72.40	75.66	4.51\%
600	83	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	103.8\%	16	70.52	72.80	3.23\%
601	83	SPOTLIGHT/REFLECTOR	R	4173:08				no	no	104.1\%	1	70.34	73.17	4.03\%
602	83	SPOTLIGHT/REFLECTOR	R	4173:08				no	no	101.0\%	4	71.22	72.43	1.70\%
603	83	SPOTLIGHT/REFLECTOR	R	4173:08				no	no	101.6\%	6	70.44	71.65	1.72\%
616	86	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	99.6\%	62	92.88	92.01	-0.94\%
617	86	SPOTLIGHT/REFLECTOR	U	4379:08				no	no	99.1\%	125	92.41	90.25	-2.34\%
618	86	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	99.3\%	102	92.51	90.97	-1.66\%
619	86	SPOTLIGHT/REFLECTOR	R	2293:25	2293:25			no	yes	0.0\%		93.03	\#DIV/0!	\#DIV/0!
620	86	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	100.4\%	115	91.62	91.07	-0.60\%
621	86	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	102.3\%	100	89.18	90.07	1.00\%
622	87	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	103.6\%	7	65.19	67.75	3.93\%
623	87	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	100.9\%	7	66.81	67.67	1.29\%
624	87	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	102.9\%	20	65.50	67.19	2.58\%
625	87	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	103.3\%	8	64.60	66.21	2.49\%
626	87	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	103.9\%	18	65.50	68.27	4.23\%
627	87	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	103.7\%	1	65.94	68.05	3.21\%
634	89	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	96.9\%	87	55.93	54.54	-2.48\%
635	89	SPOTLIGHT/REFLECTOR	U	4379:08				no	no	99.9\%	52	62.98	63.40	0.67\%
636	89	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	101.1\%	43	56.64	57.42	1.38\%
637	89	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	98.6\%	106	56.95	56.29	-1.15\%
638	89	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	103.1\%	15	73.81	77.12	4.48\%
639	89	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	104.3\%	13	71.54	74.41	4.01\%
640	90	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	102.9\%	15	87.01	90.13	3.58\%
641	90	SPOTLIGHT/REFLECTOR	U	4368:55				no	no	104.1\%	74	86.33	90.56	4.90\%
642	90	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	100.6\%	35	86.35	87.00	0.75\%
643	90	SPOTLIGHT/REFLECTOR	R	4085:12				no	no	103.3\%	5	80.87	83.74	3.54\%
644	90	SPOTLIGHT/REFLECTOR	R	4085:12				no	no	103.7\%	305	83.44	87.38	4.72\%
645	90	SPOTLIGHT/REFLECTOR	R	4085:12				no	no	102.7\%	14	87.15	90.18	3.48\%
646	91	SPOTLIGHT/REFLECTOR	U	4368:55				no	no	102.9\%	150	65.19	66.94	2.68\%
647	91	SPOTLIGHT/REFLECTOR	D	4534:51				no	no	102.5\%	43	61.60	62.87	2.06\%
648	91	SPOTLIGHT/REFLECTOR	U	4368:55				no	no	102.7\%	153	62.30	63.63	2.14\%
649	91	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	100.8\%	31	63.58	64.12	0.85\%
650	91	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	100.9\%	50	63.42	64.06	1.01\%
651	91	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	103.0\%	60	62.67	64.36	2.71\%
658	93	SPOTLIGHT/REFLECTOR	U	3938:34				no	no	101.2\%	44	72.34	73.48	1.58\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{aligned} & \hline \text { Burn } \\ & \text { Time } \\ & \hline \end{aligned}$	Fail Time	$\begin{gathered} \hline \text { Pre-Fail } \\ \text { Time } \\ \hline \end{gathered}$	Pre-Fail Mode	Pre-Fail Only?	Zombie?	Lumen Maintenance	Color Shift	Initial Efficacy	Final Efficacy	Efficacy Change
659	93	SPOTLIGHT/REFLECTOR	D	4055:30		847:12	CYCLING	yes	no	101.0\%	65	73.08	73.66	0.78\%
660	93	SPOTLIGHT/REFLECTOR	U	3938:34				no	no	101.0\%	76	73.33	73.80	0.64\%
661	93	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	101.7\%	69	71.99	73.16	1.63\%
662	93	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	99.8\%	53	76.91	76.85	-0.07\%
663	93	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	99.7\%	72	73.34	73.33	0.00\%
664	94	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	95.7\%	54	57.81	55.10	-4.69\%
665	94	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	98.9\%	51	57.36	56.55	-1.40\%
666	94	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	100.7\%	49	60.41	60.65	0.40\%
667	94	SPOTLIGHT/REFLECTOR	R	3943:16	3943:16			no	no	0.0\%		62.79	\#DIV/0!	\#DIV/0!
668	94	SPOTLIGHT/REFLECTOR	R	3536:43	3536:43			no	no	0.0\%		56.26	\#DIV/0!	\#DIV/0!
669	94	SPOTLIGHT/REFLECTOR	R	3869:13	3869:13			no	no	0.0\%		57.66	\#DIV/0!	\#DIV/0!
670	95	SPOTLIGHT/REFLECTOR	U	3938:34				no	no	101.3\%	40	76.00	76.78	1.03\%
671	95	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	102.7\%	56	72.78	74.72	2.67\%
672	95	SPOTLIGHT/REFLECTOR	U	3938:34				no	no	101.3\%	50	73.43	73.76	0.46\%
673	95	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	103.9\%	54	71.42	73.93	3.51\%
674	95	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	97.6\%	56	79.07	76.99	-2.63\%
675	95	SPOTLIGHT/REFLECTOR	R	3574:35	3574:35			no	no	0.0\%		74.44	\#DIV/0!	\#DIV/0!
676	96	SPOTLIGHT/REFLECTOR	D	4055:30		1778:14	CYCLING	yes	no	99.3\%	32	74.73	73.79	-1.27\%
677	96	SPOTLIGHT/REFLECTOR	U	4057:07				no	no	99.6\%	40	73.01	72.50	-0.69\%
678	96	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	99.2\%	33	74.20	73.52	-0.92\%
679	96	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	97.1\%	83	72.10	70.09	-2.79\%
680	96	SPOTLIGHT/REFLECTOR	R	4414:56		4312:53	CYCLING	yes	no	100.6\%	55	72.64	72.55	-0.13\%
681	96	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	99.4\%	66	74.86	74.26	-0.79\%
682	97	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	101.1\%	40	59.19	60.05	1.46\%
683	97	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	102.4\%	31	60.48	61.74	2.08\%
684	97	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	102.2\%	39	56.57	57.86	2.28\%
685	97	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	103.7\%	52	61.66	63.97	3.75\%
686	97	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	101.7\%	36	58.11	58.87	1.32\%
687	97	SPOTLIGHT/REFLECTOR	R	2533:07	2533:07			no	no	0.0\%		59.60	\#DIV/0!	\#DIV/0!
688	98	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	102.1\%	62	58.32	60.33	3.45\%
689	98	SPOTLIGHT/REFLECTOR	U	4368:55				no	no	102.0\%	60	58.32	59.44	1.93\%
690	98	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	102.8\%	40	54.40	55.95	2.84\%
691	98	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	101.3\%	53	57.55	58.02	0.81\%
692	98	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	101.0\%	73	60.07	60.58	0.86\%
693	98	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	102.8\%	50	60.58	62.23	2.71\%
694	99	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	101.9\%	-13	68.80	69.80	1.45\%
695	99	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	104.3\%	5	67.79	70.76	4.38\%
696	99	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	103.5\%	-1	69.98	72.60	3.74\%
697	99	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	101.6\%	-43	67.30	68.68	2.06\%
698	99	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	101.6\%	-37	66.25	67.20	1.43\%
699	99	SPOTLIGHT/REFLECTOR	R	1663:06	1663:06			no	no	0.0\%		56.68	\#DIV/0!	\#DIV/0!
700	100	SPOTLIGHT/REFLECTOR	D	4225:25				no	no	102.3\%	40	61.43	62.57	1.86\%
701	100	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	101.3\%	14	64.14	65.00	1.33\%
702	100	SPOTLIGHT/REFLECTOR	D	4225:25				no	no	101.2\%	20	65.15	65.36	0.32\%
703	100	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	96.4\%	75	61.84	59.32	-4.07\%
704	100	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	97.3\%	77	64.75	62.96	-2.77\%
705	100	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	98.3\%	49	62.48	61.43	-1.69\%
706	101	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	101.9\%	27	86.28	87.80	1.77\%
707	101	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	101.7\%	23	84.37	86.06	1.99\%
708	101	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	102.6\%	30	85.62	88.08	2.87\%
709	101	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	101.3\%	10	83.77	85.05	1.53\%
710	101	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	102.4\%	44	84.32	86.54	2.63\%
711	101	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	100.4\%	38	86.06	86.40	0.39\%
712	102	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	99.2\%	58	60.67	60.55	-0.19\%
713	102	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	103.0\%	93	57.95	59.99	3.51\%
714	102	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	104.1\%	84	59.58	61.31	2.91\%
715	102	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	89.6\%	132	59.36	53.10	-10.54\%
716	102	SPOTLIGHT/REFLECTOR	R	3638:24	3638:24	2522:05	CYCLING	no	no	0.0\%		56.28	\#DIV/0!	\#DIV/0!
717	102	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	104.3\%	71	53.48	55.10	3.03\%
724	104	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	96.5\%	6	72.65	69.87	-3.82\%
725	104	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	96.8\%	24	73.69	70.85	-3.85\%
726	104	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	96.4\%	31	71.13	68.26	-4.04\%
727	104	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	98.8\%	50	72.77	71.49	-1.76\%
728	104	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	98.4\%	38	72.70	71.72	-1.34\%
729	104	SPOTLIGHT/REFLECTOR	R	4414:56				no	no	97.3\%	58	73.15	70.92	-3.06\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	$\begin{aligned} & \hline \text { Burn } \\ & \text { Time } \\ & \hline \end{aligned}$	Fail Time	$\begin{aligned} & \text { Pre-Fail } \\ & \text { Time } \\ & \hline \end{aligned}$	Pre-Fail Mode	$\begin{aligned} & \text { Pre-Fail } \\ & \text { Only? } \\ & \hline \end{aligned}$	Zombie?	Lumen Maintenance	$\begin{aligned} & \hline \text { Color } \\ & \text { Shift } \\ & \hline \end{aligned}$	Initial Efficacy	Final Efficacy	Efficacy Change
730	105	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	102.3\%	32	94.63	97.03	2.54\%
731	105	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	102.1\%	39	95.23	96.58	1.42\%
732	105	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	102.5\%	38	92.89	94.98	2.24\%
733	105	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	99.4\%	63	93.06	92.20	-0.92\%
734	105	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	101.6\%	27	92.14	93.31	1.27\%
735	105	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	96.7\%	60	94.48	91.24	-3.42\%
736	106	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	98.1\%	96	100.71	98.56	-2.13\%
737	106	SPOTLIGHT/REFLECTOR	U	4414:56				no	no	97.5\%	96	103.08	100.49	-2.52\%
738	106	SPOTLIGHT/REFLECTOR	D	4173:08				no	no	97.9\%	99	102.52	100.06	-2.41\%
739	106	SPOTLIGHT/REFLECTOR	R	3160:21	3160:21	3160:21	<70\% L.O	no	no	0.0\%		100.82	\#DIV/0!	\#DIV/0!
740	106	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	98.4\%	0	101.83	99.82	-1.98\%
741	106	SPOTLIGHT/REFLECTOR	R	4252:48				no	no	102.5\%	13	103.23	105.60	2.30\%
742	107	SPOTLIGHT/REFLECTOR	U	4057:07				no	no	98.6\%	60	65.72	64.33	-2.11\%
743	107	SPOTLIGHT/REFLECTOR	D	4534:32				no	no	97.0\%	75	66.05	63.73	-3.52\%
744	107	SPOTLIGHT/REFLECTOR	U	4057:07				no	no	88.8\%	45	67.35	59.77	-11.25\%
745	107	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	91.6\%	133	65.84	60.16	-8.62\%
746	107	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	90.1\%	155	64.76	58.69	-9.37\%
747	107	SPOTLIGHT/REFLECTOR	R	4379:08				no	no	91.8\%	133	65.77	60.09	-8.64\%
748	108	SPOTLIGHT/REFLECTOR	D	3845:44				no	no	104.5\%	45	87.28	90.25	3.41\%
749	108	SPOTLIGHT/REFLECTOR	U	4057:07				no	no	104.6\%	28	90.09	94.48	4.87\%
750	108	SPOTLIGHT/REFLECTOR	D	3845:44				no	no	103.8\%	36	87.90	91.17	3.72\%
751	108	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	102.9\%	81	86.29	88.31	2.35\%
752	108	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	96.7\%	66	86.02	83.03	-3.47\%
753	108	SPOTLIGHT/REFLECTOR	R	4534:32				no	no	96.4\%	101	86.23	82.91	-3.85\%
754	109	SPOTLIGHT/REFLECTOR	U	4414:26		562:05	<5 CYCLE	yes	no	103.1\%	20	80.49	82.71	2.76\%
755	109	SPOTLIGHT/REFLECTOR	D	4290:03				no	no	96.1\%	-30	79.75	76.72	-3.79\%
756	109	SPOTLIGHT/REFLECTOR	U	4414:26		705:44	<5 CYCLE	yes	no	104.2\%	99	82.04	85.66	4.41\%
757	109	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	100.2\%	37	82.29	82.97	0.83\%
758	109	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	99.7\%	34	82.60	82.76	0.20\%
759	109	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	102.0\%	33	81.09	82.53	1.77\%
760	110	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	104.2\%	34	72.86	75.73	3.94\%
761	110	SPOTLIGHT/REFLECTOR	U	4368:55				no	no	104.9\%	126	72.08	74.81	3.79\%
762	110	SPOTLIGHT/REFLECTOR	D	4055:30				no	no	102.4\%	11	75.83	77.46	2.15\%
763	110	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	101.3\%	29	75.63	76.53	1.18\%
764	110	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	102.7\%	8	74.40	76.55	2.90\%
765	110	SPOTLIGHT/REFLECTOR	R	4225:25				no	no	101.0\%	28	74.53	74.86	0.43\%
766	111	SPOTLIGHT/REFLECTOR	D	4534:32				no	no	102.2\%	23	64.20	65.49	2.01\%
767	111	SPOTLIGHT/REFLECTOR	U	4085:12				no	no	103.7\%	13	62.09	63.75	2.66\%
768	111	SPOTLIGHT/REFLECTOR	D	4534:32				no	no	102.8\%	28	60.01	61.51	2.50\%
769	111	SPOTLIGHT/REFLECTOR	R	4085:12				no	no	99.8\%	20	62.16	62.87	1.14\%
770	111	SPOTLIGHT/REFLECTOR	R	4085:12				no	no	103.0\%	20	62.40	64.77	3.79\%
771	111	SPOTLIGHT/REFLECTOR	R	4085:12				no	no	102.9\%	45	63.87	66.25	3.73\%
1001	201	TRIM KIT	R	4252:48				no	no	102.4\%	-36	72.86	74.29	1.96\%
1002	201	TRIM KIT	R	4252:48				no	no	102.4\%	-26	71.98	73.96	2.75\%
1003	201	TRIM KIT	R	4252:48				no	no	102.7\%	-26	53.08	54.52	2.72\%
1004	202	TRIM KIT	R	4085:12				no	no	102.2\%	-25	52.68	54.24	2.95\%
1005	202	TRIM KIT	R	4085:12				no	no	102.9\%	-25	54.45	56.21	3.23\%
1006	202	TRIM KIT	R	4085:12				no	no	102.7\%	-29	54.82	56.11	2.36\%
1007	203	TRIM KIT	R	4173:08				no	no	101.7\%	-11	62.94	64.15	1.91\%
1008	203	TRIM KIT	R	4173:08				no	no	103.8\%	-9	62.60	64.81	3.52\%
1009	203	TRIM KIT	R	4173:08				no	no	103.7\%	-9	61.40	63.96	4.16\%
1010	204	TRIM KIT	R	4379:08				no	no	102.0\%	38	56.10	57.29	2.13\%
1011	204	TRIM KIT	R	4379:08				no	no	102.4\%	29	55.71	56.99	2.30\%
1012	204	TRIM KIT	R	4379:08				no	no	101.9\%	33	56.48	57.41	1.66\%
1013	205	TRIM KIT	R	4085:12				no	no	101.4\%	12	72.91	74.04	1.55\%
1014	205	TRIM KIT	R	4085:12				no	no	101.1\%	8	72.88	73.80	1.27\%
1015	205	TRIM KIT	R	4085:12				no	no	106.1\%	32	58.60	62.50	6.66\%
1016	206	TRIM KIT	R	4379:08				no	no	101.5\%	-3	55.05	55.60	1.00\%
1017	206	TRIM KIT	R	4379:08				no	no	99.8\%	14	51.51	51.29	-0.42\%
1018	206	TRIM KIT	R	4379:08				no	no	100.8\%	5	53.40	53.94	1.01\%
1019	207	TRIM KIT	R	4085:12				no	no	100.3\%	-3	61.69	61.30	-0.63\%
1020	207	TRIM KIT	R	4085:12				no	no	100.8\%	-3	61.41	60.95	-0.74\%
1021	207	TRIM KIT	R	4085:12				no	no	99.6\%	-1	61.80	61.19	-0.99\%
1022	208	TRIM KIT	R	4379:08				no	no	102.1\%	25	56.32	57.72	2.47\%
1023	208	TRIM KIT	R	4379:08				no	no	99.3\%	14	56.58	56.83	0.44\%

Test Units				Early Failure Timing						Calculated Values				
Lamp \#	Model \#	Lamp Type	Test Fixture	Burn Time	Fail Time	Pre-Fail Time	Pre-Fail Mode	Pre-Fail Only?	Zombie?	Lumen Maintenance	Color Shift	Initial Efficacy	$\begin{gathered} \hline \text { Final } \\ \text { Efficacy } \end{gathered}$	Efficacy Change
1024	208	TRIM KIT	R	4379:08				no	no	97.7\%	39	55.50	54.57	-1.68\%
1025	209	TRIM KIT	R	4085:12				no	no	102.5\%	0	65.50	67.55	3.13\%
1026	209	TRIM KIT	R	4085:12				no	no	102.5\%	-4	63.35	65.62	3.58\%
1027	209	TRIM KIT	R	4173:08				no	no	101.9\%	-5	64.72	66.40	2.59\%
1028	210	TRIM KIT	R	4173:08				no	no	98.9\%	29	65.52	65.20	-0.49\%
1029	210	TRIM KIT	R	4173:08				no	no	98.6\%	19	65.47	64.87	-0.93\%
1030	210	TRIM KIT	R	4173:08				no	no	99.7\%	21	65.16	65.36	0.31\%
1031	211	TRIM KIT	R	4252:48				no	no	100.2\%	36	65.84	65.38	-0.71\%
1032	211	TRIM KIT	R	4252:48				no	no	99.0\%	41	67.18	66.71	-0.70\%
1033	211	TRIM KIT	R	4252:48				no	no	99.6\%	33	66.71	66.54	-0.25\%
1034	212	TRIM KIT	R	4173:08				no	no	103.7\%	13	69.05	71.62	3.72\%
1035	212	TRIM KIT	R	4173:08				no	no	105.1\%	7	66.44	69.81	5.07\%
1036	212	TRIM KIT	R	4173:08				no	no	103.3\%	7	67.57	69.60	3.00\%
1037	213	TRIM KIT	R	4252:48				no	no	104.8\%	11	66.04	68.93	4.37\%
1038	213	TRIM KIT	R	4252:48				no	no	104.5\%	5	65.76	68.25	3.79\%
1039	213	TRIM KIT	R	4252:48				no	no	104.7\%	8	65.43	68.18	4.20\%

APPENDIX B NOTABLE EVENTS DURING MAINTENANCE TESTING

While the experiment mainly proceeded as planned during the maintenance test, there were a few notable events during this 15 -month period that are worthy of mention. Specifically:

- Due to power outages at the facility or equipment failures (e.g. relay failures, control computer failures, etc.) there were several periods in which the testing was temporarily suspended. In most cases the duration of these shutdowns was less than 48 hours. There was one equipment failure that led to 2 of the 22 test cycles being down for nearly one month before it was identified and repaired. In all cases, power to lamps was interrupted during the suspensions, so these periods were effectively "long cool down periods" that neither impacted the lamp operating hours nor the number of thermal cycles. All time lost to these suspensions was recovered by added equivalent testing time at the end of the test so that all circuits were operated for a full 15 month duration.
- A key database for tracking results was corrupted midway through testing. This required laboratory staff to recreate a database of failures from raw data (preserved in the control computer file systems and back up data systems) and to double-check these results with physically inspections of all test lamps.
- While most lamps that failed during testing did so in a non-ambiguous manner (e.g. they were functioning as expected and then suddenly stopped functioning entirely), a significant number exhibited behavior that was not always easy for laboratory personnel to classify as a failure or not. This is relevant as the failure time is only recorded when lamps transition from "working" to "failed." Ambiguous failure behaviors included:
- Lamps operating normally most of the time but occasionally flickering or cycling on and off.
- Lamps experiencing a sudden drop in light output but still providing a significant amount of light (e.g. more than 50% of initial light output)
- Lamps that appeared to have failed later were found to be functional.

For sudden drops in light output and cycling, the laboratory noted the time that these "pre-failure" conditions first occurred and continued maintenance testing these lamps. In many cases, these prefailures were followed shortly with full failures, and the time of the final failure was also recorded. In the case of the lamps that appeared to be failed but were later found to be working (19 lamps total) these were not identified until lamps were prepared for failure analysis testing. The laboratory practice to verify failures was for a technician to physically check lamps after the data acquisition system measured a sudden drop in light output for a lamp. Technicians would observe that the lamp was non-functional in the test location and them remove the lamp and attempt to operate it again in a separately powered socket. If the lamp was still not responsive, then it would be considered a failure with a failure time as specified by the data acquisition system. For the 19 lamps in question, all failed these physically checks
but then were found to be functional at the end of the maintenance testing when they were checked a third time prior to being inspected for failure analysis. It is likely that these lamps had some sort of thermal protection within their circuitry that caused them to be non-operational soon after they were initially flagged as failures which was reset some time later (when they were fully cool).

In the results discussion, we provide a further explanation of how we grouped and analyzed these "grey area" failures.

APPENDIX C LOGIT MODEL REGRESSION RESULTS

Torpedo/C Fixture Interaction
*Model 8 does not contain any A -Lamps in the data used
for the logit regression modeling

Parameter	Model 3					Model 4				
	Max Rescaled R square - 0.6382					Max Rescaled R square - 0.6383				
	Estimate	Standard Error	P Value	Marginal Change in Odds Ratio	Marginal \% Change in Likelihood of Failure	Estimate	Standard Error	P Value	Marginal Change in Odds Ratio	Marginal \% Change in Likelihood of Failure
Intercept										
95\% Warm Time						-0.0354	0.0139	0.0110	0.97	-3\%
Maximum Temperature	0.0603	0.0167	0.0003	1.06	6\%	0.0507	0.0164	0.0020	1.05	5\%
Power	0.0791	0.095	0.4049	1.08	8\%	0.1666	0.0911	0.0676	1.18	18\%
Lumens	0.000807	0.00085	0.3424	1.00	0\%	-5.73E-08	0.000818	0.9999	1.00	0\%
Power Factor	15.1124	7.6297	0.0476	3657900.84	365789984\%	15.0099	7.5477	0.0467	3301541.37	330154037\%
THD	0.00531	0.0214	0.8035	1.01	1\%	0.00605	0.0211	0.7748	1.01	1\%
CRI	0.1198	0.0468	0.0106	1.13	13\%					
R Fixture Flag	-37.348	8.563	<. 0001	0.00	-100\%	-25.9227	7.6146	0.0007	0.00	-100\%
D Fixture Flag	-37.8644	8.6231	<.0001	0.00	-100\%	-26.879	7.6912	0.0005	0.00	-100\%
C Fixture Flag	-37.5851	8.6178	<. 0001	0.00	-100\%	-26.3334	7.6868	0.0006	0.00	-100\%
U Fixture Flag	-37.8516	8.6122	<. 0001	0.00	-100\%	-26.9079	7.6733	0.0005	0.00	-100\%
CEC Compliant Flag	-2.9289	0.5519	<. 0001	0.05	-95\%	-1.6556	0.3524	<. 0001	0.19	-81\%
A-Lamp Flag	1.3111	0.8384	0.1179	3.71	271\%	1.763	0.886	0.0466	5.83	483\%
Torpedo/Bullet Flag	1.1502	1.0095	0.2545	3.16	216\%	1.6583	1.0671	0.1202	5.25	425\%
Reflector Flag	-0.437	0.8219	0.5949	0.65	-35\%	0.0749	0.8777	0.9320	1.08	8\%
Cycles per Day	0.1787	0.0799	0.0253	1.20	20\%	-0.0104	0.1026	0.9190	0.99	-1\%
Number of Hours On per Day	0.5157	0.1668	0.0020	1.67	67\%	0.7634	0.1914	<. 0001	2.15	115\%
Power/D Fixture Interaction		-			-	-	-			-
Power/C Fixture Interaction		-				-	-			-
Power/U Fixture Interaction		-			-	-	-			-
Power/A-Lamp Interaction		-			-	-	-			-
Power/Torpedo Interaction		-			-	-	-			-
Power/Reflector Interaction		-			-	-	-			-
Power/Globe Interaction		-				-	-			-
A-Lamp/R Fixture Interaction		-			-	-	-			-
A-Lamp/D Fixture Interaction		-			-	-	-			-
A-Lamp/C Fixture Interaction		-			-	-	-			-
A-Lamp/U Fixture Interaction		-			-	-	-			-
Reflector/D Fixture Interaction		-			-	-	-			-
Reflector/R Fixture Interaction		-			-	-	-			-
Reflector/U Fixture Interaction		-			-	-	-			-
Torpedo/D Fixture Interaction		-			-	-	-			-
Torpedo/U Fixture Interaction		-			-	-	-			-
Torpedo/C Fixture Interaction		-	-		$-$	-	-			-

Torpedo/C Fixture Interaction
*Model 8 does not contain any A -Lamps in the data used
for the logit regression modeling

Parameter	Model 5					Model 6				
	Max Rescaled R square - 0.6528					Max Rescaled R square -0.6288				
	Estimate	Standard Error	P Value	Marginal Change in Odds Ratio	Marginal \% Change in Likelihood of Failure	Estimate	Standard Error	P Value	Marginal Change in Odds Ratio	Marginal \% Change in Likelihood of Failure
Intercept						-				
95\% Warm Time	-0.0322	0.0144	0.0253	0.97	-3\%	-0.037	0.0140	0.0081	0.96	-4\%
Maximum Temperature	0.0431	0.0178	0.0152	1.04	4\%	0.03	0.0173	0.0832	1.03	3\%
Power							-			
Lumens	-0.00051	0.0009	0.5548	1.00	0\%	-0.00101	0.0009	0.2642	1.00	0\%
Power Factor	11.6695	7.5420	0.1218	116949.79	11694879\%	-2.3208	2.1038	0.2700	0.10	-90\%
THD	0.000266	0.0213	0.9900	1.00	0\%	-0.0374	0.0093	<. 0001	0.96	-4\%
CRI	0.097	0.0469	0.0389	1.10	10\%	-0.0532	0.0279	0.0566	0.95	-5\%
R Fixture Flag	-29.7709	8.5240	0.0005	0.00	-100\%		-			-
D Fixture Flag	-31.0282	8.5449	0.0003	0.00	-100\%		-			-
C Fixture Flag	-30.2586	8.5661	0.0004	0.00	-100\%		-			-
U Fixture Flag	-30.9172	8.5408	0.0003	0.00	-100\%		-		-	-
CEC Compliant Flag	-2.5364	0.5522	<. 0001	0.08	-92\%	-1.0324	0.3999	0.0098	0.36	-64\%
A-Lamp Flag						-	-			-
Torpedo/Bullet Flag		-				-	-			-
Reflector Flag						-	-			-
Cycles per Day	0.0227	0.1047	0.8287	1.02	2\%	-0.0988	0.0916	0.2807	0.91	-9\%
Number of Hours On per Day	0.7878	0.1948	<. 0001	2.20	120\%	0.6189	0.1835	0.0007	1.86	86\%
Power/D Fixture Interaction						0.0033	0.1172	0.9776	1.00	0\%
Power/C Fixture Interaction		-				0.0802	0.1189	0.5000	1.08	8\%
Power/U Fixture Interaction		-				0.00448	0.1179	0.9697	1.00	0\%
Power/A-Lamp Interaction	0.2797	0.1011	0.0056	1.32	32\%	0.2704	0.0922	0.0034	1.31	31\%
Power/Torpedo Interaction	0.2817	0.1791	0.1158	1.33	33\%	0.2093	0.1530	0.1715	1.23	23\%
Power/Reflector Interaction	0.11	0.0891	0.2170	1.12	12\%	0.0882	0.0896	0.3249	1.09	9\%
Power/Globe Interaction	0.2481	0.1650	0.1328	1.28	28\%		-		-	-
A-Lamp/R Fixture Interaction						-	-		-	-
A-Lamp/D Fixture Interaction		-			-	-	-		-	-
A-Lamp/C Fixture Interaction		-				-	-		-	-
A-Lamp/U Fixture Interaction					-	-	-		-	-
Reflector/D Fixture Interaction						-	-		-	-
Reflector/R Fixture Interaction		-			-	-	-		-	-
Reflector/U Fixture Interaction						-	-		-	-
Torpedo/D Fixture Interaction						-			-	-
Torpedo/U Fixture Interaction					-	-	-		-	-
Torpedo/C Fixture Interaction					-	-			-	-

*Model 8 does not contain any A-Lamps in the data used
for the logit regression modeling

Parameter	Model 7					Model 8*				
	Max Rescaled R square - 0.6164					Max Rescaled R square - 0.8000				
	Estimate	Standard Error	P Value	Marginal Change in Odds Ratio	Marginal \% Change in Likelihood of Failure	Estimate	Standard Error	P Value	Marginal Change in Odds Ratio	Marginal \% Change in Likelihood of Failure
Intercept						-	-			
95\% Warm Time	-0.0517	0.0138	0.0002	0.95	-5\%	0.033	0.0242	0.1732	1.03	3\%
Maximum Temperature	0.0479	0.0168	0.0043	1.05	5\%	0.0604	0.0269	0.0245	1.06	6\%
Power	0.1809	0.0932	0.0521	1.20	20\%	0.0376	0.1811	0.8356	1.04	4\%
Lumens	0.000065	0.0008	0.9387	1.00	0\%	-0.00225	0.00218	0.3018	1.00	0\%
Power Factor	-1.1238	2.3514	0.6327	0.33	-67\%	20.8766	7.8534	0.0079	1165714452.57	116571445157\%
THD	-0.0361	0.0094	0.0001	0.96	-4\%	0.057	0.0291	0.0504	1.06	6\%
CRI	-0.0908	0.0256	0.0004	0.91	-9\%	-0.3196	0.1019	0.0017	0.73	-27\%
R Fixture Flag		-				-	-			
D Fixture Flag		-				-	-			
C Fixture Flag		-				-	-			
U Fixture Flag		-				-	-			
CEC Compliant Flag		-				0.7363	1.0188	0.4698	2.09	109\%
A-Lamp Flag		-				-	-			
Torpedo/Bullet Flag		-				-	-			
Reflector Flag		-				-	-			
Cycles per Day	-0.1372	0.0930	0.1399	0.87	-13\%	0.2131	0.2129	0.3168	1.24	24\%
Number of Hours On per Day	0.6797	0.1859	0.0003	1.97	97\%	-0.2987	0.5146	0.5616	0.74	-26\%
Power/D Fixture Interaction					-	-	-			
Power/C Fixture Interaction		-				-	-			
Power/U Fixture Interaction		-				-	-			
Power/A-Lamp Interaction		-				-	-			
Power/Torpedo Interaction		-				-	-			
Power/Reflector Interaction		-				-	-			-
Power/Globe Interaction						-	-			-
A-Lamp/R Fixture Interaction	2.2675	0.8670	0.0089	9.66	866\%		-			-
A-Lamp/D Fixture Interaction	1.5612	0.7882	0.0476	4.76	376\%		-			-
A-Lamp/C Fixture Interaction	1.8808	0.8383	0.0249	6.56	556\%		-			-
A-Lamp/U Fixture Interaction	1.2753	0.8157	0.1179	3.58	258\%		-			-
Reflector/D Fixture Interaction	-0.1443	1.0229	0.8878	0.87	-13\%		-			-
Reflector/R Fixture Interaction	0.9534	0.8362	0.2543	2.59	159\%		-			-
Reflector/U Fixture Interaction	-0.3356	1.0117	0.7401	0.71	-29\%		-			-
Torpedo/D Fixture Interaction	0.1768	1.3405	0.8951	1.19	19\%	-	-			-
Torpedo/U Fixture Interaction	0.0504	1.3316	0.9698	1.05	5\%		-			-
Torpedo/C Fixture Interaction	2.3839	1.0085	0.0181	10.85	985\%	-	-			-

Torpedo/C Fixture Interaction
*Model 8 does not contain any A -Lamps in the data used
for the logit regression modeling

APPENDIX D POST MORTEM FORENSIC ANALYSIS

Light-Emitting Diode (LED) Lamp Failure Analysis for the California Public Utilities Commission LED Laboratory Test Study

Report

Prepared by
Kelley Rountree and J. Lynn Davis
RTI International
3040 E. Cornwallis Road
Research Triangle Park, NC 27709

CONTENTS

Section Page

1. Introduction 1
1.1 LED Driver 1
1.2 LED Module 2
2. Methods 2
2.1 Initial Inspection and Disassembly 3
2.1.1 Initial Inspection 3
2.1.2 Lamp Disassembly Procedure. 3
2.2 Interior Inspection 4
2.3 Electrical Continuity Testing of Key Components 4
2.4 Further Testing 4
3. Results 6
3.1 Abrupt Failures 7
3.1.1 Driver Continuity Failures 7
3.1.2 LED Module Continuity Failures 8
3.2 Reduced Light Output Failures 9
3.2.1 Reduced Light Output Failure Due to the LED Module 11
3.2.2 Reduced Light Output Failures Due to the Driver 12
3.3 Common Failure Sites for Each Driver Topology 12
3.3.1 Flyback Topologies 13
3.3.2 Boost Topologies 14
3.3.3 Buck Topologies 18
3.4 Intermittent Failure Analysis 18
4. Conclusions 20

FIGURES

Number Page
2-1. Key steps in the disassembly of LED test lamps. 4
2-2. Output voltages of the control driver (1 and 2) and the test driver (3 and 4) with a control LED module load and test LED module load, respectively 6
3-1. Categorization of failed test lamps by (a) driver topology and (b) luminary fixture type 7
3-2. Major continuity failures for drivers: (a) capacitor solder failure, (b) transformer solder failure, and (c) multiple solder and component failure (transformer and capacitor solder failures with localized heat stress are shown). Yellow boxes highlight the solder failure 8
3-3. Main mechanisms of abrupt failure for LED modules: (a) complete LED solder failure and (b) LED failure. 9
3-4. Two LEDs showing poor solder wetting on the gold pad 9
3-5. LED packages with silicon encapsulation that is (a) ideal and (b) damaged. Images were obtained with an Olympus 6Z61 microscope under identical conditions. A blue saturation layer was added over the images to highlight defects. 10
3-6. Failure location by category for test LED lamps 11
3-7. SEM images of (a) an LED contact pad that shows embrittlement, an inhomogeneous contact surface, and alloy whiskering and (b) an LED with an inhomogeneous contact surface 12
3-8. Failed test lamps categorized by manufacturer (A through E), and then subcategorized by driver topology 13
3-9. The failure location for each of the examined test lamps with a flyback topology. 14
3-10. Two representative drivers with a boost topology where board discoloration is localized to the LED connection points 15
3-11. An SEM image of an LED module contact pad (top). Surface composition is provided when the boost driver pin touches the gold pad (Spectrum 1, middle) and around the perimeter of the pad (Spectrum 2, bottom) 17
3-12. The intermittent test lamps categorized by manufacturer (B through E), and then subcategorized by driver topology 19

LIST OF ACRONYMS

${ }^{\circ}$ C	degree Celsius
A	ampere
AC	alternating current
CPUC	California Public Utilities Commission
DC	direct current
IC	integrated circuit
LED	light-emitting diode
MOSFET	metal-oxide semiconductor field-effect transistor
PCB	printed circuit board
SEM	scanning electron microscopy
SSL	solid-state lighting
V	volt
W	watt

1. INTRODUCTION

A determination of failure location for light-emitting diode (LED) test lamps provides insight into LED-based lighting product robustness and is essential to the development of better solid-state lighting (SSL) technologies for illuminating homes and offices. This report summarizes failure analysis studies of LED lamps subjected to four different test conditions as part of an investigation, led by Itron Inc., for the California Public Utilities Commission (CPUC). ${ }^{1}$ There are two main assemblies in an LED lamp where a failure can occur: the LED drivers and the LED modules. Understanding how these two assemblies function, both together and apart, is necessary to identify failure location and improve the reliability of SSL products. Such information not only benefits manufacturers of LED-based lighting products and their customers, but it also benefits electric utilities due to the potential of SSL technologies to significantly reduce electricity consumption from lighting.

1.1 LED Driver

Most LED lighting devices use a driver to convert mains electricity to the proper voltage and current necessary to capitalize on the efficiency of LEDs. These drivers are typically constant current providers, meaning that the driver will vary the voltage across its load (i.e., the LEDs) to maintain a constant electric current. A consistent power supply is essential to these devices because it maintains regulated light output and ensures device reliability. There are some common driver topologies that use switched-mode power supplies to deliver high electrical efficiencies. The common driver topologies are boost, buck, buck-boost, and flyback. These drivers rely on an integrated circuit (IC) controller to operate a transistor. The transistor is responsible for regulating the device, and it achieves this by switching on and off at high frequency.

Within each driver, there are five (or more) electronic circuits that are used to convert mains electricity to the power necessary to operate LEDs. Failure of a component, or loss of electrical connection between components, in any of these circuits would be catastrophic to overall device performance. These circuits include the following: ${ }^{2}$

- Filter and condition - the input mains electricity (often alternating current [AC] power) is filtered by inductors and capacitors. A fuse is in this circuit to protect the driver from sudden power surges.

[^24]- Rectify - the input AC electricity is converted to direct current (DC) electricity by a diode bridge, capacitors, resistors, and diodes.
- Shaping and power factor correction (PFC) - the rectified DC power is shaped by the control IC, capacitors, inductors, and/or resistors to reduce ripple and to provide PFC.
- Switched-mode control - the switching transistor is operated by the control IC to regulate output power. Other components (e.g., inductors, capacitors, diodes) help with this operation.
- Final Filtering - the DC output power is filtered by components such as electrolytic capacitors, film capacitors, inductors, transformers, and/or opto-isolators.

Each of the previously mentioned driver topologies use different component configurations within the five electrical circuits to convert mains electricity to a desired DC output power. Boost driver topologies are step-up drivers (i.e., they convert mains voltage to a higher output voltage), whereas buck drivers are step-down drivers (i.e., they convert mains voltage to a lower output voltage). Both driver topologies typically have electrically coupled AC mains and DC outputs, but they can be distinguished by an inductor in the switchedmode control circuit that is characteristic of buck topologies. Flyback driver topologies can be step-up or step-down drivers, and they have a distinguishable isolation transformer that electrically isolates the AC mains from the DC output. Because there are different highstress locations for each driver topology, this report will focus on categorizing failure location by electronic circuit and driver topology.

1.2 LED Module

An LED module is an assembly of LED packages on a printed circuit board (PCB) and additional thermal, mechanical, and electrical interfaces to connect to the load side of an LED driver. Interruption of the electrical or thermal connections provided by the LED module could result in abrupt failure of the device. Additionally, loss of contact between the module and individual LEDs or LED packages (e.g., in the way of solder failure) would also be detrimental to the operation of the LED lamp. The information in this report can be used to identify any such connection losses in the failed test lamps.

2. METHODS

A three-step analysis process was proposed to identify the point of failure for each failed LED lamp. These three steps involved (1) initial inspection and disassembly, (2) interior inspection, and (3) electrical continuity testing of key components. Each of these three steps is further described in Subsections 2.1 through 2.3 of this report. Although this proposed method has been very successful at identifying LED device failure location in the past, the failed lamps examined herein had a much lower component failure rate than expected. Therefore, additional analysis beyond the proposed process was performed to
identify the location of the failure. This additional analysis included some thermal, electrical, and surface composition testing.

2.1 Initial Inspection and Disassembly

The first step in this analysis was an inspection of the as-received lamps that included an electrical power consumption test as described in Subsection 2.1.1 of this report. The second step in this analysis was to disassemble the device as described in Subsection 2.1.2. Because of the high force needed to disassemble some of the failed LED test lamps, the condition of each lamp was carefully documented prior to and over the course of disassembly to detect and record any artificial damage induced during disassembly. For example, if too much force is applied when breaking the glass globe, the impact of the shattering glass could induce LED solder failure.

2.1.1 Initial Inspection

The failed LED test lamps received by RTI International were configured in a base-up, baresocket fixture, and power was supplied to perform an initial electrical test. Power consumption analysis of the failed test lamp was performed with a Kill A Watt ${ }^{\top \mathrm{M}}$ EZ Power Meter. As described in Subsection 2.1.2, most lamps exhibited residual power consumption, which indicates some level of electrical function in the device even if light is not produced. For devices that did illuminate, perceived brightness, flicker rate, and other signs of damage (e.g., audible rattling within the lamp, discoloration) were noted.

2.1.2 Lamp Disassembly Procedure

The steps involved in the disassembly of a sample test lamp are presented in Figure 2-1. Briefly, the globe of the test lamp was removed via a bandsaw (for plastic globes) or groove-joint pliers (for glass globes). The test lamps were then powered in a base-up, baresocket fixture to examine the LED module and record any defects (e.g., solder failure, brittle encapsulation, discolorations, reduced light output) within individual LED packages. The LED module and heatsink assembly were removed from the driver and base assembly (by pin-and-clip detachment or wire cutting). Finally, the base was disconnected from the driver with a Dremel tool. In some instances, the driver was encapsulated in a silicone potting material, which was removed with a flathead screwdriver.

Figure 2-1. Key steps in the disassembly of LED test lamps.

2.2 Interior Inspection

The driver electronics, LED module, individual LEDs, and all interconnections were visually inspected for signs of discoloration, solder failure in components, and charred or heatstressed components, and other issues. The observed deformities were documented and, in some cases, photographed if many lamps experienced the same types of deformities. The topology of the driver was determined at this stage by looking for characteristic components such as a flyback transformer or a buck inductor. Examination of the controller IC also helped to determine driver typology.

2.3 Electrical Continuity Testing of Key Components

The continuity and functionality of major driver components (i.e., fuses, inductors, transformers, transistors, diodes, diode bridges, and the control IC) were examined with a Radioshack True RMS Digital Multimeter. If a component failed and/or if there was a continuity failure between components, then the failure location was assigned to the electrical circuit that encompassed that component (some devices had more than one component failure and were thus assigned more than one failure location). For devices in which the main electrical components functioned properly, and the LEDs did not experience solder failure, more testing was performed (see Subsection 2.4 of this report).

2.4 Further Testing

When the failure location for test lamps could not be determined from the initial testing, the control lamps of the corresponding model number were compared with the failed lamps from the CPUC tests (i.e., test lamps). The operating temperature of each control lamp (on
the surface of the globe, within the globe, and sometimes by the control IC) was recorded, and then compared with the test lamp. The globes of the test and control lamps were then removed to enable additional comparisons.

The Radioshack True RMS Digital Multimeter was used to measure the DC output voltage produced by the control and test drivers connected to control and test the LED module loads. As such, four output voltages were measured (see Figure 2-2). These output voltages are of the

1. Control driver connected with the control LED module
2. Control driver connected with the test LED module
3. Test driver connected with the control LED module
4. Test driver connected with the test LED module.

In addition, the power consumptions of the four configurations were recorded with a Kill A Watt EZ Power Meter. The ideal operating voltage and power consumption for each lamp model were assigned as the voltage measured between the control driver and control LED module load and the corresponding power consumption, respectively. Deviations from the ideal operating voltage were assessed to narrow failure location to the test driver (if the test driver was unable to operate the control LED module) or test LED module (if the control and test drivers operated the control LED module, but could not operate the test LED module).

The example shown in Figure 2-2 highlights a test lamp in which failure was limited to the LED module. For this test lamp, both the control and test LED drivers reached a voltage much higher than the ideal voltage when paired with the test LED module, but were still unable to produce significant illumination (Figure 2-2, panels 2 and 4, respectively). When paired with the control LED module, both the control and test driver operated at a much lower voltage (223 V) and with far greater illumination (Figure $\mathbf{2 - 2}$, panels 1 and 3, respectively). In constant current drivers, a forward current is preset, and the driver varies the voltage to an appropriate level to provide the preset forward current. If illumination from a device is low at the maximum operating voltage of the driver, then this suggests that an inadequate amount of current is being supplied to the LED module. Inadequate current output could be the result of a defective driver or a change in the LED module load. To distinguish the two, it is necessary to understand that drivers have a maximum operating voltage. Because the voltages supplied by the drivers connected with the test LED module in Figure 2-2 are significantly greater than the ideal voltage, this implies that there has been a change in load. The supplied voltage is higher because the drivers are attempting to deliver an appropriate current to the load. Ultimately, the drivers cannot deliver the appropriate current within their designed voltage range (i.e., the driver voltage is being maximized; thus, the current can only reach a specific value). Such behavior usually indicates a change in the LED module.

Because many failures were localized to the LED module, scanning electron microscopy (SEM) was used to determine the surface topology and composition of LED solder joints and the LED contacts and pads (when applicable). These results are discussed further in Section 3 of this report.

Figure 2-2. Output voltages of the control driver (1 and 2) and the test driver (3 and 4) with a control LED module load and test LED module load, respectively.

3. RESULTS

The location of test lamp failure was investigated for 26 LED lamp models, which consisted of a total of 84 failed devices. The drivers for most of the failed devices (64%) had a boost topology (Figure 3-1a). Additionally, more than two-thirds of the failed test lamps were operated in an enclosed ceiling fixture or recessed downlight (Figure 3-1b). These fixtures
thermally isolate lamps, increasing operating temperatures by $20^{\circ} \mathrm{C}$ or more. This finding suggests that thermal stress has a significant impact on device failure time.

Failure location analysis of the test LED lamps revealed the following three major trends that will be discussed in more detail throughout this section of the report:

1. There were few catastrophic failures of the driver components or LEDs.
2. There were many solder and/or contact failures.
3. There were correlations between driver topology and failure location and between model number and failure location.

Figure 3-1. Categorization of failed test lamps by (a) driver topology and (b) luminary fixture type.

3.1 Abrupt Failures

Interestingly, initial visual and electrical analysis of the LED modules and drivers (as described in Subsections 2.1 through 2.3) confirmed failure location for only one-third of the devices. In addition, 20 devices exhibited continuity or functionality failure of a driver component, and another 12 devices showed confirmed signs of LED module failure (e.g., complete solder failure, extreme discoloration, signs of excessive heat).

3.1.1 Driver Continuity Failures

Abrupt continuity and/or functionality failure of a driver component was prevalent in devices using a flyback topology (10 out of the 14 failed driver devices with a flyback typology experienced this type of failure). Typical continuity failures for tested flyback driver topologies included through-hole solder failure and localized signs of heat stress near the transformer and metal-oxide semiconductor field-effect transistor (MOSFET) components (Figure 3-2). Other through-hole solder failure (e.g., capacitors, inductors, power lines), as well as open fuses, broken diode bridges, or any combination thereof, were also found on flyback driver topologies and on failed devices with boost (six devices) and buck (four devices) topologies. Through-hole failures were often manifested as visible cracks in the solder joint, often of a circular nature (see Figures $\mathbf{3 - 2 b}$ and $\mathbf{3 - 2 c}$). In some instances, the solder joint fractured completely, and the lead separated from the joint (see Figure 3-2a).

The continuity failures were likely the result of localized heat induced by switching cycles in the switched-mode control and final filtering stages, as evidenced by the large number of transformer to MOSFET and inductor to MOSFET solder failures and localized signs of heat stress on the driver at these locations (Figure 3-2c).

Figure 3-2. Major continuity failures for drivers: (a) capacitor solder failure, (b) transformer solder failure, and (c) multiple solder and component failure (transformer and capacitor solder failures with localized heat stress are shown). Yellow boxes highlight the solder failure.

3.1.2 LED Module Continuity Failures

Care was taken to minimize damage to the LED module during disassembly, and signs of complete LED package solder failure (i.e., a loose LED in the globe) were noted, if possible, before disassembly. In two cases, it was difficult to determine whether the LED solder failed before disassembly (for these two devices, we assumed that failure occurred on the LED module, but we did not classify the failure as abrupt or intermittent). Other LED packages on these failed devices had such brittle solder that simply touching them, or the shock of removing the globe, caused complete solder failure. Brittle solder joints were prevalent in specific model numbers and, in some cases, particular LEDs within that model number. This problem suggests that there was a manufacturing or design issue. Drivers with a boost topology were most likely to have LED modules that experienced complete LED solder failure (Figure 3-3a). In two cases, an abrupt failure occurred even when all LED packages still appeared to be attached to the module (Figure 3-3b). In these cases, the encapsulant was dislodged, leaving behind a black carbon residue. Subsequent LED failure resulted.

In addition, an examination of the solder pads of some failed parts showed incomplete wetting of the solder on the gold pad as shown in Figure 3-4. In some cases, such solder joints were observed to be dull with poorly formed fillets, whereas in other areas of the same component, appropriate solder fillets were found. Poor solder wetting can arise from several manufacturing issues, including insufficient solder paste application, surface contamination on the gold pads, and insufficient dwell time above the solder liquidus point
during reflow. These issues will contribute to poor solder joint quality and increase the likelihood of intermittent or complete joint failure.

Figure 3-3. Main mechanisms of abrupt failure for LED modules: (a) complete LED solder failure and (b) LED failure.

Figure 3-4. Two LEDs showing poor solder wetting on the gold pad.

3.2 Reduced Light Output Failures

Devices that did not experience driver or LED module component discontinuity issues still provided some lumen output, but this light was often very dim, it flickered wildly, and/or there were signs of encapsulation and lead frame discoloration (Figure 3-5). In some cases, extreme signs of damage were observed in the encapsulation (Figure 3-5b, dark black spot on right side). These devices were analyzed further through an electrical test (as described in Subsection 2.4 of this report). Briefly, the test was designed to narrow the
failure location to the LED module or to the driver. After this analysis, only a small fraction (2\%) of the failure locations were still unknown.

Figure 3-5. LED packages with silicon encapsulation that is (a) ideal and (b) damaged. Images were obtained with an Olympus $6 Z 61$ microscope under identical conditions. A blue saturation layer was added over the images to highlight defects.

A compilation of failure locations for all examined failed test lamps is described in this paragraph and provided in Figure 3-6. Failure location was sorted into the following three main categories: LED module failures, driver failures, and unknown failures. LED module failure was the most prevalent failure mechanism for the test lamps in this study (67\%). Failures that occurred on the LED module could be further classified by whether the failure was abrupt or because of an intermittent contact issue. Abrupt failures were previously discussed in Subsection 3.1.2, and intermittent contact failures are discussed in Subsection 3.2.1. For two of the devices that experienced LED module failure, the failure location was not classified as abrupt or intermittent. The failure location for these devices was classified as an abrupt/intermittent failure to account for the uncertainty in whether the device was damaged during disassembly. Failures that occurred on the driver were classified into six categories: pre-filter and condition, switched-mode control, filter and condition, final filtering, DC regulation failure, and multiple failure locations. These six categories, except for DC regulation failure, pinpoint an exact location on the driver where failure location occurred (i.e., these were abrupt failures [see Subsection 3.1.1]). The DC regulation failure category is further described in Subsection 3.2.2. Finally, the location of failure for two devices could not be determined through our tests; therefore, the assignment of failure location for these devices was classified as unknown.

Figure 3-6. Failure location by category for test LED lamps.

3.2.1 Reduced Light Output Failure Due to the LED Module

Surprisingly, failures occurred on the LED module for most (67\%) of the failed test lamps (Figure 3-6). Approximately one-fourth of these lamps failed catastrophically because of complete solder and/or LED failures (see Subsection 3.1.2). The remainder of the LED module failures were determined through electrical tests. These tests showed that failure was not introduced at any point within the driver and must be within the LED module.

Although the electrical test did not reveal an exact failure location on the LED module, there is strong evidence to support that solder embrittlement and contact oxidation led to lower device performance (Figure 3-7). We believe that these failures were at least partially the result of high, localized heat near the LED packages that resulted in the formation of intermetallics in the solder and soldered surface metals. Such intermetallics are known to be brittle and can introduce micro-cracks into the solder joints. ${ }^{3}$ In particular, many of these lamps used gold pads as solder surfaces, and it is well known that gold dissolves in many solders to form brittle intermetallics (see Subsection 3.1.2).

[^25]Figure 3-7. SEM images of (a) an LED contact pad that shows embrittlement, an inhomogeneous contact surface, and alloy whiskering and (b) an LED with an inhomogeneous contact surface

3.2.2 Reduced Light Output Failures Due to the Driver

Most of the LED driver failures were because of discontinuity and component failures (Figure 3-6). However, approximately one-fourth of the failed drivers were DC regulation failures. This failure mode was detected and assigned when the output voltage of the test driver (connected to the control LED module load) was much lower than the voltage necessary to operate the control LED module (as determined by the control driver). Notably, the tested electrical components on these drivers passed initial continuity and electrical tests. However, there could have been an undetected component failure that rendered the driver incapable of regulating direct current at the proper level when power was supplied. Half of the DC regulation failures occurred on drivers with a flyback topology, and the other half occurred on drivers with a boost topology. It is hypothesized that localized heat around the transformer and inductor, respectively, and MOSFET damaged the control IC. Most control ICs contain a temperature sensor that reduces current when the temperature is too high. More investigation was not pursued regarding whether the control IC failed or cause of DC regulation failure.

3.3 Common Failure Sites for Each Driver Topology

Among the examined test lamps, a strong correlation between failure location (i.e., LED module versus driver failure) and driver topology was identified. Within the buck and flyback topologies, we found that specific driver failure location (e.g., component failure, solder failure, DC regulation failure) varied with respect to the manufacturer. Because of the correlation between the manufacturer, driver topology, and failure location, a chart has been developed to document the percentages of examined test lamps produced by each manufacturer (the manufacturers are labeled as A through E in Figure 3-8). Some manufacturers (i.e., B and D) used different driver topologies to build different lamp
models, but other manufacturers (i.e., A, C, and E) used the same driver topology for all of the examined test lamp models.

Figure 3-8. Failed test lamps categorized by manufacturer (A through E), and then subcategorized by driver topology.

The remainder of Subsection 3.3 discusses the common failure locations for flyback (Subsection 3.3.1), boost (Subsection 3.3.2), and buck (Subsection 3.3.3) topologies, and a correlation between the manufacturer and the failure location, when applicable, is provided congruently. Although there were also a few lamps with a linear regulator topology, failure location assignment for these devices was only successful for two of them (limiting any useful trends).

3.3.1 Flyback Topologies

As previously discussed in Subsections 3.1.1 and 3.2.2, flyback topologies account for most of the failures within the drivers, and all failed flyback samples examined in this study failed somewhere within the driver (Figure 3-9). Flyback driver topology was predominantly used by two different manufacturers (C and D in Figure 3-8), and the failure location on the driver was correlated to which manufacturer produced the driver. However, it is important to note that although manufacturer A also used a flyback driver topology, there was only one failed device; therefore, it will not be discussed in this report.

For manufacturer C, there was often evidence (e.g., board discoloration and/or solder joint failure on the PCB) of localized heat near the transformer, but surprisingly, the transformer
and MOSFET components did not fail. Instead, continuity was disrupted between these two components by solder failure (Figure 3-2), and a cascade of other components failures and solder failures ensued. For manufacturer D, DC regulation failure occurred on all devices. It is possible that the control IC for these devices was harmed by the high temperatures around the device; however, no additional investigation of the control IC was performed.

We believe that both failure mechanisms were caused by extreme, localized heat. Luminaire assemblies with a flyback topology had the highest operating surface temperatures in comparison with other lamps-nine out of the 10 hottest failed lamps had a flyback topology, with surface temperatures as high as $103.5^{\circ} \mathrm{C}$. The elevated operating temperatures suggest that flyback topologies can produce damaging levels of heat in the switched-mode control and final filtering electrical stages. This damage has been observed to manifest as solder failure (manufacturer C) or DC regulation failure (manufacturer D).

Figure 3-9. The failure location for each of the examined test lamps with a flyback topology.

3.3.2 Boost Topologies

Boost topologies comprised the largest number of failed lamps (64\%, Figure 3-1) and were distributed between 13 different models and three different manufacturers (B, D, and E). Most of these models (approximately 91%) were produced by the same manufacturer (i.e., E [Figure 3-8]). Within each model of devices produced by manufacturer E , a power consumption analysis of the drivers revealed similar power factors and consumption of power and current. All failed test lamps that were analyzed had low power factors (≤ 0.5) and consumed low amounts of power ($\leq 0.6 \mathrm{~W}$) and current (approximately 0.01 A). Fully operational control lamps had significantly higher power factors (approximately 0.98),
power consumption ($\geq 8 \mathrm{~W}$, actual consumption based upon the model), and current consumption (approximately 0.1 A).

Failure location for most of these devices (85\%) was determined to be somewhere on the LED module for manufacturers D and E. For manufacturer B, device failure occurred because of driver component failure, which was consistent with all of the other lamps produced by this manufacturer. An examination of the temperatures within select lamps from manufacturer E revealed that the LED packages experienced much higher temperatures (between $90-95^{\circ} \mathrm{C}$) than driver components ($60-65^{\circ} \mathrm{C}$) for lamps operated in a base-up, bare-socket fixture. Severe discoloration of the driver PCB near the LED module connection site supports the observation that heat is localized around the LED module (Figure 3-10). Furthermore, it is expected that the actual operating temperature of the LEDs was higher than that measured during these experiments for two reasons. First, many of the failed lamps were operated in enclosed ceiling fixtures and recessed downlights, which adds approximately $20-25^{\circ} \mathrm{C}$). Second, the temperature in this analysis was measured slightly above the LED module to prevent short circuiting of the thermocouple with the metal LED module.

Figure 3-10. Two representative drivers with a boost topology where board discoloration is localized to the LED connection points.

As discussed in Subsection 3.2.1 of this report, we believe that intermittent interconnect failure induced by high thermal stress is a leading cause of failure for these devices. This conclusion is supported by the analysis of temperatures within selected lamps and SEM surface analysis of LED solder joints (Figure 3-7). For many of the samples, intermittent contact failure could also be introduced at both sides of the connectors used to connect the driver to the LED module. To validate this conclusion, we used SEM to map surface topology and composition of driver and LED module connection points. Surface composition of a representative LED module pad is shown in two locations: where it contacts the driver pin and on the perimeter of the pad (see Figure 3-11, Spectrums 1 and 2, respectively). High concentrations of titanium and oxygen were found on the driver contact point (Spectrum 1), but the remainder of the pad was comprised of primarily of gold and nickel (Spectrum 2); nickel was likely transferred from the driver contact to the LED module pad (SEM image not shown). The increased titanium concentration at the driver contact point suggests that the driver contact scratched away the gold layer on the pad to reveal the titanium layer beneath it. The titanium was likely coated beneath the gold layer to reduce intermetallic mixing of gold and copper. However, when the gold layer was scratched away, titanium was exposed to air and readily oxidized, forming an electrically insulating layer on the LED module pad. A combination of these intermittent contact failures is most likely the cause of the decrease in light output observed for these lamps.

Figure 3-11. An SEM image of an LED module contact pad (top). Surface composition is provided when the boost driver pin touches the gold pad (Spectrum 1, middle) and around the perimeter of the pad (Spectrum 2, bottom).

3.3.3 Buck Topologies

Overall, there were a few failed test lamps with a buck topology (12 devices total). These devices were manufactured by two different companies (i.e., B and D [see Figure 3-8]), and failure location was correlated to the manufacturer.

Manufacturer D made seven of the failed test lamps, which all had the same model number. The failure location for these lamps was determined to be somewhere on the LED module. This finding was surprising because the lamps operated at much lower temperatures than the lamps with a boost topology that failed in a similar location. The measured temperatures were approximately $50^{\circ} \mathrm{C}$ on the globe surface, $77^{\circ} \mathrm{C}$ near the LEDs, and $65^{\circ} \mathrm{C}$ near the control IC. The LED modules for these seven test lamps provided little physical evidence regarding why they failed. The only notable observation was significant degradation of the silicone encapsulant for many of the LED packages (Figure 3-5). It is possible that the expansion associated with this degradation caused stress on the gold wires used to connect the LEDs in a package (although direct evidence of broken gold wires was not observed). It is also possible that the solder connections between some LED packages and LED modules were compromised (although the solder joints appeared to be physically intact).

The other five devices, produced by manufacturer B, spanned three different model numbers and experienced driver component failure. Diode, inductor, and fuse failures were among the list of component failures, which was consistent with the failures observed for this manufacturer for boost and flyback topologies (see Subsections 3.3.2 and 3.4).

3.4 Intermittent Failure Analysis

In addition to the 84 failed devices discussed in Subsections 3.1 through 3.3 of this report, we examined 15 devices that were prone to fail intermittently. Often, these devices operated without incident for minutes or hours, and then shut off. Within the 15 intermittent devices, there were 13 different models produced by manufacturers B through E (Figure 312).

Overall, we found that the intermittent devices failed in the same location as failed test lamps. All devices produced by manufacturer B experienced driver component failures, regardless of driver topology, as previously mentioned. The remainder of the devices produced by manufacturers C and E followed similar failure mechanisms as previously mentioned. For example, intermittent devices with a flyback driver topology experienced extreme, localized heat near the transformer and MOSFET components. These intermittent devices experienced MOSFET failure, transformer through-hole partial solder failure, and through-hole partial solder failure on the pins that connect to the LED module. These findings were consistent with the failed test lamp analysis of flyback driver topologies produced by manufacturer C. Furthermore, the intermittent devices with a boost topology
failed somewhere along the LED module. This finding was consistent with the failed test lamp analysis of boost driver topologies produced by manufacturer E.

Two intermittent devices were produced by manufacturer D. A failure location could not be assigned for the device with boost topology, and a different driver topology was used for the second device. The latter device experienced MOSFET failure.

Figure 3-12. The intermittent test lamps categorized by manufacturer (B through $E)$, and then subcategorized by driver topology.

Finally, it should be noted that at least 66% of the intermittent devices had a driver component or solder failure (compared with a mere 24% of failed devices, Figure 3-6). Part of the failure location shift can be attributed to a shift in driver topology. The intermittent failure population represented a lower percentage of boost drivers than the failed test lamp population (53% vs 64%, respectively). Additionally, there were more drivers with a flyback topology in the intermittent group (40% vs 17\%). Another part of the failure location shift can be attributed to a shift in manufacturer. There was a significant decrease in lamps produced by manufacturer E in the intermittent failure group compared to the failed test lamp population (20% vs 60%, respectively). Because manufacturer E only produced drivers with a boost topology (in this study), we believe that the failure rate for LED modules with a boost topology (especially those produced by manufacturer E) is higher than the failure rate associated with component solder or functionality failure for all other topologies. Therefore, we expect that the increase in driver component solder or
functionality failure for intermittent devices was simply due to fewer LED module failure devices being left at the point of intermittent failure.

4. CONCLUSIONS

Market acceptance of LED-based lighting technologies has grown significantly in the past decade because this technology enables significantly reduced electricity consumption attributable to illumination. However, total market penetration of SSL technologies is still less than 20% in many applications due to the exceeding large installed base. Consequently, low-quality products that exhibit excessive rates of premature failure could dampen enthusiasm for this still nascent technology and slow market penetration. Such action would have the impact of requiring more electricity generation assets to meet the load requirements of less efficient light sources. Therefore, it is beneficial for manufacturers, customers, and lighting stakeholders to have a knowledge of potential failure mechanisms in SSL technology to negate future issues. This study reports on findings from failure analysis investigations of LED lamps tested by CPUC in a project led by Itron, Inc.

In this study, an examination of the failed test devices revealed a clear correlation between model number and failure location and between driver topology and failure location. It was also found that the percentage of driver component failures (approximately 24%) was less than expected and that most failures (67%) occurred on the LED module. These results were surprising because we anticipated that more test lamps would experience driver component failure than LED module failure. Upon examination of devices that failed intermittently, we found that more devices experienced driver component failures (66\%) than LED module failures (20\%). However, failure location did not change for intermittent devices produced by the same manufacturer and with the same topology. Therefore, for LED lamps, we postulate that the rate for LED module failure is higher than the rate for driver component solder or functionality failure under the conditions used in the CPUC LED laboratory tests. An examination of the failed lamps also revealed that the driver and LED modules often failed because of a solder or contact issue; we have identified high-stress locations where manufacturers can improve the solder technique. In particular, flyback topologies were susceptible to through-hole component solder failure-transformer and MOSFET solder joints were often damaged because of localized heating around these components. Additionally, solder technique could be improved between the LED packages and the LED module for devices with a boost driver topology. By improving solder technique in these high-stress areas, it is likely that manufacturers could improve LED lamp lifetime substantially and capitalize on the robustness of individual LEDs. Such actions would benefit LED-device manufacturers and their customers, but would also provide benefits to lighting industry stakeholders in California including taxpayers, municipalities, and public utility companies.

[^0]: 1 This definition of lamp failure does not include excessive lumen depreciation (e.g., if a lamp is still providing any measurable light, it was not considered to have failed).

[^1]: 2 Effective useful life is the average number of years a given piece of equipment is likely to remain in service.
 3 Efficacy describes the energy efficiency of light sources in terms of the amount of light output (measured in lumens) per unit of input power (measured in watts).

[^2]: 4 The CA Quality Spec builds directly off the current ENERGY STAR product specifications, except for higher standards for Color Rendering Index (CRI), warranty, dimmability, power factor, and noise. The CA Quality Spec does not include any additional certification or reliability testing beyond that required for ENERGY STAR.
 5 Rated life is a manufacturer's estimate of the number of years (or hours) that an LED lamp will remain in service.

[^3]: 6 IES LM-84 is the current industry testing standard for producing rated values of lumen maintenance over time for LED lamps. It is important to note that rated life values are currently based exclusively on estimates of lumen depreciation, i.e. the average time required for the lumen output of an LED lamp to decrease to 70 percent of its initial output.
 7 "Photometrics" is a general term used to describe the various units used to measure and describe light. The specific photometric and electrical measurements included in IES LM-79 are: power input, lumen output, power factor, total harmonic distortion, color rendering index (CRI), and correlated color temperature (CCT).
 8 IES LM-79 is the current industry testing standard for measuring and verifying the rated photometric and electrical performance of LED lamps.

[^4]: 9 DNV GL (2015), "2015 California Retail Lighting Shelf Survey." Prepared for the CPUC.
 10 Examples of "pre-failure" conditions are severe flickering and dramatically reduced light output (i.e. $<70 \%$ rated lumen output). From a consumer perspective, we believe it is reasonable to treat such pre-failure lamps as equivalent to lamps that have catastrophically failed, since it is likely that consumers would replace such lamps as soon as pre-failure behavior manifests itself.
 11 A-lamps are the most common type of screw-based general service lamp, known for their pear-like shape.

[^5]: 12 Survival analysis refers to a kind of statistical analysis where the variable being modeled is the time until the occurrence of an event of interest (e.g. product failure).

[^6]: ${ }^{13}$ Available at:
 http://www.energydataweb.com/cpucFiles/pdaDocs/1275/LED_Lab_Test Study_Public_Final Research Plan WithAppendices.pdf
 14 http://www.cpuc.ca.gov/NR/rdonlyres/7350FF48-9AFC-449E-8AD219E520E2A7F5/0/20132014 EMV EvaluationPlan v4.pdf

[^7]: 15 http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led-adoption-report 2013.pdf
 16 http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl trend-analysis 2013.pdf
 17 http://www.energy.ca.gov/2012publications/CEC-400-2012-016/CEC-400-2012-016-SF.pdf
 18 The CA Quality Spec builds directly off the current ENERGY STAR product specifications, except for higher standards for Color Rendering Index (CRI), warranty, dimmability, power factor, and noise. The CA Quality Spec does not require any additional certification or reliability testing beyond that required for ENERGY STAR.

[^8]: 19 Additional background and rationale behind the experimental design is provided in the Final Research Plan: http://www.energydataweb.com/cpucFiles/pdaDocs/1275/LED Lab Test Study Public Final Research Plan WithAppendices.pdf

[^9]: 20 It should be noted that some LED lamps are explicitly labeled by their manufacturers as not being compatible with enclosed fixtures. However, we chose not to use this compatibility information as a criterion for determining the lamp model-luminaire combinations to test. This choice is related primarily to the likelihood that such compatibility information is not always followed by consumers. As such, we wanted to explicitly evaluate the performance of these LED lamps in "incompatible" luminaires.
 ${ }^{21}$ See http://www.calmac.org/publications/WO13 CA Res Ltg Mkt Status Report - FINALES.pdf
 ${ }^{22}$ These are the luminaires used in ENERGY STAR's Elevated Temperature Life Test: Option A.

[^10]: 23 The room temperature was maintained at $25^{\circ} \mathrm{C}+/-5^{\circ} \mathrm{C}$. In this example, the warm-up period was during the daytime hours when ambient temperatures in the test facility were at $25^{\circ} \mathrm{C}$ while the cool-down period was during nighttime hours when the ambient temperatures in the test facility dropped to $20^{\circ} \mathrm{C}$.

[^11]: 24 https://webtools.dnvgl.com/projects62/crlss/Home.aspx

[^12]: 25 Note that the direct online procurement approach assumes that such "retail channel effects" are statistically insignificant. In consultation with the CPUC, we decided to test this hypothesis using the CFL test data to determine if retail channel had any statistically significant impact on CFL lamp performance. The results of this analysis indicated that retail channel did not have a statistically significant impact on CFL lamp performance. The details of this analysis are presented in Appendix A of the Research Plan.

[^13]: 26 In-scope refers to the strata identified in Table 3-1, which do not include strata with small (i.e. <5\%) market shares. These strata include MR16, MR11, PAR16, PAR20, BR20, and R40.
 27 The RLSS does not include data on downlight retrofit kits, so we are unable to estimate the market shares of the downlight retrofit kit models included in our test sample. However, as mentioned previously, the retrofit kit test sample was not designed to be representative of the California market.

[^14]: 28 Itron and IOU staff intentionally procured one extra test sample of each model included in the final sample design as a backup in case of breakage during shipping, breakage during sample preparation, or receipt of nonfunctioning units.

[^15]: 29 Note that the testing facility experienced some unexpected events during the course of maintenance testing. Appendix B provides documentation of these events and how these events were addressed in order to maintain the integrity of the test and its results.

[^16]: 30 We measured lamp temperature at a single point on each lamp. While the process for placing the thermocouples was consistent, differences in lamp designs as well as some random effects (e.g. placement of thermocouple near particularly hot components) likely contribute the variability of these results.

[^17]: 31 Note that the thermal tests includes only a few near-air measurements for bare socket fixtures, mainly to confirm that air temperatures near lamps in these open air applications are minimal as compared to constrained-air applications.

[^18]: 32 While it would be technically more accurate to evaluate color shift in term of changes in u'v' values, we discuss color shift in terms of CCT both for simplicity and because CCT is a more common consumer-facing metric.

[^19]: ${ }^{34}$ For logistic regressions, R-squared values can never achieve a maximum value of 1 . In this sense, such R-squared values from logistic regressions can artificially appear low. A maximum re-scaled R-squared provides a metric of overall model fit that is more closely analogous to R-squared values from linear models. Mathematically, the maximum rescaled R-squared is a ratio of the R-squared over the maximum achievable R-squared for that discrete model.
 ${ }^{35}$ Although some dummy variables representing various lamp-fixture combinations has statistically significant coefficients, the magnitude of those coefficients across the various lamp-fixture combinations were not significantly different from each other.

[^20]: 36 The post-mortem analysis was conducted on a total of 105 failed lamps, which represents 80% of all failures observed during the maintenance test. While we had intended to have post-mortem analysis conducted on all lamps that failed during maintenance testing, project calendar constraints restricted the post-mortem analysis to all lamps that had failed by mid-May 2017 (i.e. 105). However, two of the 22 control circuits continued operation through the end of May 2017 to make up for lost testing time following a power outage at the test facility (as detailed in Appendix B). The impact of this is that none of the lamps on those control circuits that failed in late May 2017 were included in the post-mortem analysis.
 37 Many, but not all, IC controllers used in LED drivers include a temperature sensor that reduces current when temperatures exceed certain limits (generally around $115^{\circ} \mathrm{C}$).

[^21]: ${ }^{38}$ For these two devices, we assumed that failure occurred on the LED module, but we did not classify the failure as abrupt or intermittent.
 39 Driver topology refers to the strategies used by manufacturers to achieve and maintain the voltage and current required to operate LED modules under optimal conditions. The common driver topologies are boost, buck, buck-boost, and flyback.

[^22]: 40 The regression analysis presented in Section 4.5 was focused on isolating the relative contribution of individual thermal, photometric, and lamp/luminaire characteristics on the probability of early failure over the entire maintenance test.

[^23]: ${ }^{41}$ See http://www.calmac.org/publications/CFL Lab Study.pdf.

[^24]: ${ }^{1}$ Ting, M. and E. Page. 2016. EnergyStar Lighting Webinar titled CPUC LED Lab Test Study Update. September 29. Available at https://www.energystar.gov/sites/default/files/asset/document/Michael\%20Ting\%20CPUC \%20LED\%20Lab\%20Test.pdf
 ${ }^{2}$ Davis, J.L., K. Mills, R. Yaga, C. Johnson, and J. Young. 2017. Chapter 15: Assessing the reliability of electrical drivers used in LED-based lighting devices. Solid State Lighting Reliability Part 2: Components to Systems. doi: 10.1007/978-3-319-58174-3_15

[^25]: ${ }^{2}$ Bradley, E. 2003. Lead-free solder assembly: Impact and opportunity. In Proceedings of the 53rd Electronics Component Technology Conference. doi: 10.1109/ECTC.2003.1216254

