2019 AND BEYOND POTENTIAL STUDY

CUSTOM AND EMERGING TECHNOLOGY METHODOLOGY FOR INDUSTRIAL AND AGRICULTURAL SECTORS

FEBRUARY 2019

INTRODUCTION AND SCOPE

Scope of this discussion:

- Share with interested stakeholders the methodology used to develop the energy efficiency potential in the Agricultural and Industrial sectors for emerging technologies and generic custom technologies.
- Describe the characterization of the savings and the top down modeling methodology to calculate potential.
- Topics
 - Industrial and Agricultural Measure Categories
 - Approach to Generic Custom Measures
 - Approach to Emerging Technologies
 - Draft Example of Output Format

The 2019 P&G study defines the Industrial and Agricultural markets with **four measures** categories

Characterized measures:

 Discrete measures that account for ~60% of sector savings. These measures have defined characteristics and are forecasted using a diffusion model.

Generic custom measures:

 Projects unique to various subsectors that cannot be readily defined at the measure level or forecasted using a diffusion model, such as measure labelled "Process – Other".
 Generic custom also includes a large number of discrete measures that each contribute a small amount of savings and collectively account for less than ~10% of sector savings.

Emerging technology measures:

 A combination of measures that are entering the market in the short term. Limited measure characterization data and modeling approach using a top-down model

SEM:

 SEM savings represent a mix of measures including SEM per ISO definition, advanced use of centralized controls / SCADA, RCX and continuous commissioning, and continuous improvement

Examples

Lighting, VSDs

Process - Other

Micro-channel HX Other process specific

Operational/SEM

Modelling Approach

- Savings for each measure category will be forecasted separately and added together to form the sector forecast.

Measure Categories	2019 P&G Model Approach
Characterized Measures	Bottom-up bass diffusion approach
Generic Custom	Top-down approach
Emerging Technologies	Top-down approach
SEM	Top-down approach

Measure savings estimates based on analysis of historic CEDARS and EEStats data for Industrial and Agriculture market sectors

2013 – 2017 Average Industrial Percent of Savings*

Impact Type	Gross GWh	Gross MMth	
Characterized Measures	61%	48%	
Generic Custom	22%	49%	
SEM	17%	3%	
Total	100%	100%	

Source: Navigant analysis of EEStats and CEDARS

2016-2017 Agricultural Percent of Savings**

Impact Type	Gross GWh	Gross MMth	
Characterized Measures	76%	58%	
Generic Custom	17%	42%	
SEM	7%	0%	
Total	100%	100%	

Source: Navigant analysis of EEStats and CEDARS

^{*} Industrial and Ag Q3 and Q4 2017 EEStats data was extrapolated based on CEDARS

^{**} Full AG data note available prior to 2016

- 2019 P&G model redefined Ag sector measure to be consistent with IEPR forecast definition.
 - Included new measure category for CEC for water pumping NAICs.

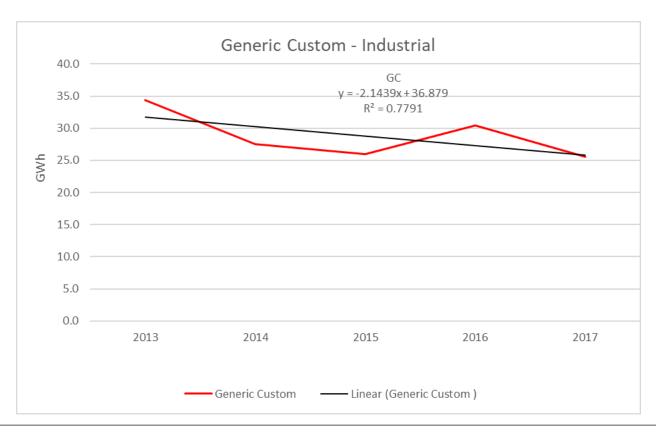
NAICS Code	NAICS Code description	PG&E	SCE	SDG&E
221310	Water Supply and Irrigation Systems	71%	2%	93%
221311	Water pumping, municipal water supply	5%	96%	4%
221312	Water pumping, agriculture irrigation	24%	2%	3%

Source: CEC

Comparison of Ag segment definition by model vintage

2017 P&G Forecast Ag Segments
Irrigated Agriculture
Post-Harvest Processing
Dairies
Refrigerated Warehouses
Wineries and Vineyards
Concentrated Animal Feeding Operation
Greenhouses

Source: Navigant


2019 P&G Forecast Ag Segments
Dairies, fishing, hunting
Irrigated Agriculture, vineyards, forestry and greenhouses
Water pumping

APPROACH TO GENERIC CUSTOM MEASURES

Historic savings (net and gross) for generic custom measures are defined from CPUC reports, evaluations, and tracking data.

Review of EEStats data indicates generic custom measure savings decreasing between

2013 and 2017

APPROACH TO GENERIC CUSTOM MEASURES

- General AIMS forecast equations:
 - Incremental Market Potential (kWh and Therms) =
 Annual Segment Consumption x Applicability Factor x Unit Energy Savings x Participation Rate
 - Incremental Market Potential (MW) = Market Potential (kWh) x Peak to Energy Ratio
 - Program Cost = Market Potential x Cost Factor
- Generic custom inputs and updates.

Factor	P&G Model Vintage		
Factor	2017	2019	
Unit energy savings			
kWh	0.16%	0.09%	
Therm	0.17%	0.13%	
Applicability Factor	100.0%	100.0%	
Participation rate	Constant	Decreases at 2.1% per year	
Peak to energy ratio	0.00020	0.00020	
Effective Useful life	15	15	
Reference case costs			
kWh	\$0.33	\$0.33	
Therm	\$2.25	\$2.25	

- 2019 forecasting approach consistent with 2017 P&G ET methodology:
 - 1. Reviewed various sources to update list of ETs applicable to the AIMS sector, including:
 - Emerging Technologies Coordinating Council
 - California Energy Commission Publications Database
 - DOE Research and Development Projects
 - DOE Energy Efficiency & Renewable Energy Emerging Technologies Database
 - Broad web search which included independent research of topics and keywords that seemed of relevance based on initial web scrape results.
 - 2. Used emerging technology evaluation criteria to assess applicability and potential of new measures.

Technology Characteristic	Weight	1	2	3	4	5
Energy Technical Potential	3	Low	Low	Medium	High	High
Energy Market Potential	3	Low	Low	Medium	High	High
Market Risk	2	High Risk	High Risk	Medium Risk	Low Risk	Low Risk
Technical Risk	2	High Risk	High Risk	Medium Risk	Low Risk	Low Risk
Utility Ability to Impact Market	1	Private sector will succeed without utility involvement	Utility is unlikely to be critical to adoption	Utility is likely to accelerate adoption	Utility is very important in accelerating adoption	Utility is essential for catalyzing market
Non-Energy Benefits (NEBs)	1	Few or none NEBs	Some modest NEBs likely	Significant benefits; difficult to quantify / not understood		Extensive, quantified, well- understood NEBs

- 3. Used emerging technology evaluation criteria to assess approximately 1,140 ET's
- 4. The following formula was used to calculate a Unit Energy Savings (UES) multiplier for each emerging technology, applied to a specific market sector and end-use:

$$M_{e,i,j} = T_e \times E_{i,j} \times MT_j \times TW_j$$

Where:

e = subscript indicating the emerging technology

I = subscript indicating the end-use

j = subscript indicating the market sector

 $M_{e,i,j}$ = multiplier for each emerging technology, e, applied to end-use, i, and sector, j

 T_e = technology energy savings percentage for emerging technology, e

 $E_{i,j}$ = percentage of sector j energy attributable to end-use, i

 MT_i = market trajectory for sector j

 TW_i = segment energy consumption trend weight for sector j

- 5. General AIMS forecast equation used to define ET potential:
 - Incremental Market Potential (kWh and Therms) = Annual Segment Consumption x Applicability Factor x Unit Energy Savings x Participation Rate
 - Incremental Market Potential (MW) = Market Potential (kWh) x Peak to Energy Ratio
 - Program Cost = Market Potential x Cost

Emerging Technologies inputs and updates:

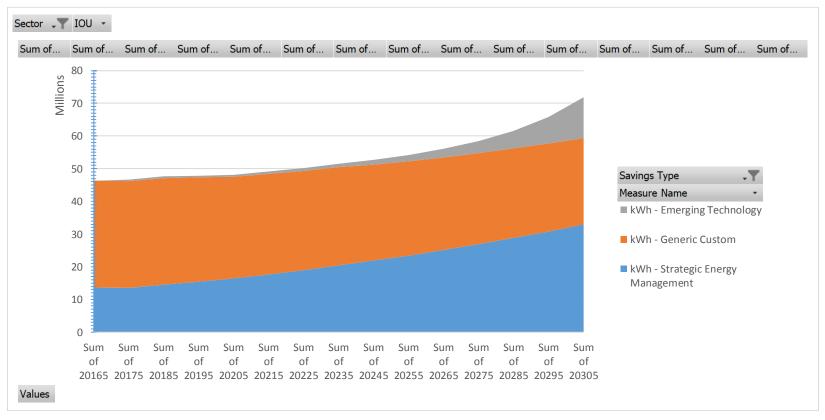
Footor	Model Vintage			
Factor	2017	2019		
Peak to energy ratio	0.00020	0.00020		
Effective Useful life	15	15		
Reference case costs				
kWh	\$0.42	\$0.42		
Therm	\$2.83	\$2.83		

Emerging Technologies inputs and updates continued:

Changed starting saturations, penetration forecast method, and compound annual growth rate (CAGR) to

reflect ET's entering the market in 2019

Factor	Model Vintage			
Factor	2017	2019		
Starting Saturation	1.0%	0.1%		
Reference CAGR	1.3%	3.3%		
Aggressive CAGR	2.0%	4.3%		


Source: Navigant

Updated UES factors on select measures to reflect current research and address QA/QC issues with 2017 estimates.

Commont	Fuel	Model Vintage		
Segment	Fuel	2017	2019	
Ind - Food	kWh	1.6%	1.7%	
Ind - Electronics	kWh	2.4%	0.8%	
Ind - Electronics	therms	4.1%	1.4%	
Ind - Plastics	kWh	1.4%	0.9%	
Ind - Plastics	therms	5.4%	3.6%	
Ind - Fabricated Metals	kWh	1.5%	1.0%	
Ind - Fabricated Metals	therms	14.2%	9.5%	
Ind - Industrial Machinery	kWh	2.9%	1.9%	
Ind - Industrial Machinery	therms	5.6%	3.7%	
Ind - Transportation Equipment	kWh	1.2%	0.8%	
Ind - Transportation Equipment	therms	1.9%	1.3%	
Ind - Printing & Publishing	kWh	1.0%	1.0%	
Ind - Printing & Publishing	therms	1.0%	1.0%	
Ind - Textiles	kWh	1.4%	0.5%	
Ind - Textiles	therms	2.9%	1.0%	
Ind - Lumber & Furniture	kWh	1.3%	0.9%	
Ind - Lumber & Furniture	therms	2.7%	1.8%	
Ag - Irrigated Agriculture	kWh	9.6%	4.8%	
Ag - Refrigerated Warehouses	therms	11.9%	0.0%	
Ag - Greenhouses	kWh	4.2%	4.1%	

DRAFT EXAMPLE OF AIMS OUTPUT FORMAT

Example of AIMS forecast output format for generic custom, SEM, and emerging technologies

INFORMAL WRITTEN COMMENTS

- This presentation will be accessible at the Evaluation Studies Public Document Search website at https://pda.energydataweb.com/#!/
- The team welcomes informal, written comments
- Due date: February 11, 2019
- Comments can be submitted electronically via the PDA

CONTACTS

GREG WIKLER

Project Director 415.399.2109 greg.wikler@navigant.com

KAREN MAOZ

AIMS Lead 415.399.2172 karen.maoz@navigant.com

MATTHEW JOYCE

Tierra Resource Consultants ET Lead 303-579-3344 mathew.joyce@tierrarc.com

AMUL SATHE

Project Manager 415.399.2180 amul.sathe@navigant.com

FLOYD KENEIPP

Tierra Resource Consultants AIMS Co-Lead 925.954.7363 floyd.keneipp@tierrarc.com